Ramatoulie
Bah
Shayla R. Brooks
Dana Brown
Linwood Creekmore
Torreon N. Creekmore
Vincent Augustus Davis
Peter Eley
Danielle Graves
Paula Harrell
Golar Newby
Elizabeth Rascoe
Carl W. Seward
Eunice Smith
Rodney Stewart
Nelson Veale
Jordan Williams
|
Nelson Veale
email: shawnb17@hotmail.com
Mentor:
Dr. Guoqing Tang, Dr. Dominis P. Clemence, Dr. Caesar R. Jackson
Internship: North Carolina A&T University, Greensboro, North
Carolina
Title: Forward
Finite Difference Modeling of Seismic Wave Propagation
There has been a concentrated effort in the use of numerical modeling
to create synthetic seismograms. Geophysicists, mathematicians,
and computer specialists have made a collective effort to create
accurate models to refine the method used to analyze geophysical
phenomena. A simple and accurate approach to this challenge is finite
difference representation. This method uses numerous discrete solutions
to the second order acoustic or elastic wave equations in homogenous
or heterogeneous regions to simulate seismic wave propagation through
acoustic or elastic media.
In this project we investigated these finite difference methods
and presented an analysis of a model based on actual subsurface
structure findings obtained from geophysical surveys at North Carolina
A&T State University Environmental Study Site using seismic
refraction technique. The model used consisted of two distinct layers
with different velocities. Both velocity and density in each layer
were assumed to be constant. The study of this numerical modeling
problem focused on:
• Determining
(a) appropriate boundary conditions
(b) a reasonable source function that resembles the actual source
wavelet generated through swinging a sledgehammer
(c) Critical offsets beyond which we expected the occurrence of
head waves
• Discretizing the partial differential equation representing
our model using three-point central difference approximations to
convert the PDE into an explicit iterative difference equation
• Developing a Maple computer program to solve the PDE numerically
and plot the numerical solution
• Interpreting the obtained synthetic seismic data
|