

Design and Development of a Virtual Dashboard for a
Polar Robot

Author: DeQuincy Faulcon
Mentor: Dr. Arvin Agah

I. ABSTRACT

The goal of this research project

is to design and develop a graphical user
interface (GUI) for the MARVIN II
polar rover that will be accessible over
the Internet. This interface will
resemble a simulation of the rover in the
format similar to such video games as
Test Drive 2 for the Sega Genesis and F-
Zero GP Legend for the Gameboy
Advance. Before programming, a
conceptual diagram has to be created. In
order to accomplish this, the main source
for the inspiration for the project had to
be used. There are some features on the
conceptual layout that have not yet been
applied to the rover itself, but possibly
may be included in the future. As the
capabilities of the rover improve, the
abilities of the virtual dashboard should
improve as well.

II. INTRODUCTION

The purpose of this graphical

user interface is to provide anyone with
a view of what the rover is doing at the
time from the first-person perspective
and to output various data that are
available. The first person perspective
simply is one where the one is allowed
to have a view as if one was in the
vehicle itself. Such data that is being
outputted but not limited to: pitch, yaw,
roll, speed, fuel and the GPS position.
The Java programming language was
created in the year 1994 and is
incorporated into nearly every Web-
based program. The virtual dashboard
will load in from the website in the form

of an applet. There were many factors
involved on making the decision to use
the Java programming language.

 The most obvious reason for
Java’s popularity is that it can run on
PCs, Sun workstations and Macintoshes.
Another reason is because the features
Java contains are borrowed from C and
C++, making it somewhat familiar [1].
Xerox’s Palo Alto Research Center
(PARC) created the first GUI. The first
GUI was then enhanced by Apple
Computer and then further enhanced by
Microsoft. GUIs were well received
because they were able to allow almost
anyone learn how to use a program
within a fraction of the time [2]. Also,
Microsoft Paint was used in the creation
of the conceptual design because of its
simplicity.

III. METHODS

 Before the actual GUI is created,
a few conceptual models have to be
created. In order to begin the design
process, the initial inspiration had to be
reviewed. The source for this project
was video games. After careful
deliberation, it was decided that
simulation and racing-type video games
were to be used as a template. The
popular arcade racing game, Daytona
Racing, was used because it had a
simple, but effective layout that was
informative and easy to read from the
first-person point of view. These models
were created in Microsoft Paint and
edited using Adobe Photoshop. From
the models, one was chosen and refined

to reflect the desired functionalities of
the GUI.

Fig. 1 The chosen conceptual model.

With the easy part of designing the
desired GUI completed, the next step
was to learn how to program the GUI.
The programming language of choice
was Java because of its portability.

 Before there was any
programming to be done, the Java 2
Standard Edition Software Development
Kit (J2SE SDK) had to be downloaded
and installed. When that was finished,
the task of learning how to program in
that specific language came to hand.
There were many books as well as
tutorials on the Internet available. To
learn the basics of the language, the
following books were used:
Introduction to Programming Using Java
and Java Demystified. The first book,
Introduction to Programming Using Java
served as a reference to learn the basics,
such as defining classes and
implementing loops. The other book,
Java Demystified went into more detail
about applets applications. Originally,
in order to write, compile and run Java
code, two different programs were used.
First, the code had to be written in a text
editor, such as Notepad and then
compiled and ran using Microsoft DOS
command prompt window. Finding this
process to be time-consuming, some
Internet exploration was conducted to
find a better, more efficient way to code,

compile and run Java programs. After
performing a search using a search
engine, many Websites were displayed
with the term, integrated development
environments (IDE). IDEs are programs
that streamline the process of editing,
compiling and executing code by
allowing all three to be performed within
the application [1]. As a result of the
Internet searches, it was decided that
Textpad would be used.

Helios Software Solutions
developed the Textpad IDE. Textpad has
the ability to use various compilers as
well as to be able to display both Java
applications and applets. This program
was very useful as a beginner application
for using the basics, but using a linear
set-up to create applets was both time-
consuming and inefficient. This meant a
return to the Internet to find an object-
oriented IDE.

Fig. 2 Screenshot of the Textpad Interface

Object-oriented IDE’s are more
practical in these situations because of
the ability the user has to design the
graphical user interface to meet the
desired output of the user. The first
object-oriented IDE to be used was
JFrame Builder.

Mars Microsystem Company
developed the JFrame Builder. This IDE
was very limited in its capabilities,

specifically in design options. JFrame
Builder could only generate code for the
Swing libraries and it could not handle
images. It is more desirable to have the
code based on the AWT libraries
because Swing is relatively new and may
not be supported on some of the older
web-browsers.

Fig3. Screenshot of JFrameBuilder

With JFrame Builder being unable to
meet the needs of the project, a
replacement program was found. The
next program to be used was Borland’s
JBuilder X.

JBuilder X was a vast
improvement over JFrame Builder.
J Builder X was created and developed
by the Borland Software Corporation.
This program allows for the creation of
applications and applets using either
Swing or AWT libraries. The layout of
JBuilder X is easier to understand and
allows the user to work on more than
one part of the main program at a time.
Even with all of its features and
functions, JBuilder X had the same
problem as JFrame Builder. This
problem dealt with the lack of ease to be
able to load pre-made images. To rectify
this problem, another IDE was found by
the name of Eclipse.

Fig 4. Screenshot of JBuilder X.

 Eclipse is a multiple language
IDE, meaning that it can compile more
than one type of programming language.
This IDE is part of an open source
project, meaning anyone can contribute
to making it better through plug-ins. A
plug-in is a supplementary program that
is created outside of the main program.
Its purpose is to enhance what is already
there. Once Eclipse was downloaded
and installed, it was found that a plug-in
was needed in order to use an object-
oriented approach to create an applet.
After looking through various plug-ins,
Jigloo was found to be the most useful.
This plug-in was created by Cloud
Garden. With the plug-in installed, the
GUI was completed with the necessary
images.

Fig 5. Screenshot of Eclipse with Jigloo.

IV. RESULTS

The result of this project is a GUI

that provides the first person view
from the rover. From this view, the
user can determine many things.
Some of the information the viewer
can see is: pitch, temperature, fuel,
and location. The GUI itself can be
compiled and executed. Being that
the design GUI has just been recently
created, it will take some time before
it is able to receive data. The
construction of this GUI is only the
beginning of its use.

Fig 5. Actual Applet of the GUI

V. Conclusion

In conclusion, the design and
implementation of the GUI itself can be
done. With this success, the project can
be built upon and expanded in seemingly
limitless ways. This project itself gave
the impression of the creation of a video
game, which means that there are always
ways to improve upon the existing
product. One possibility is to add other
views, such as third person and bird’s
eye views. Another possibility to
enhance this project is to create an
interchangeable dashboard to suit the
taste of the user. A third is to create,
edit, and upload pictures to give a better
impression that the rover is in motion.
In order to use the actual code however,
a licensing fee must be paid to Cloud

Garden. This initial GUI is only the
beginning of what can possibly be done.

VI. REFERENCES

[1] Arnow, David M. Introduction to Programming Using

 Java. Reading: Addison Wesley, 2000.
[2] Keogh, Jim. Java Demystified. New York:

McGraw-Hill/Osborne, 2004.
[3] Nourie, Dana. "Building an Application ." Online

Training and Tutorials:Graphical User Interfaces
and Printing. Nov 2001. Sun Developer Network.
20 june 2005
<http://java.sun.com/developer/onlineTraining/>.

[4] Tutorial:Building an Applet. 16 Sept 2002. 27 June 2005
<http://www.ida.liu.se/~TDDB62/introjb/firstappl
et/firstapplet_part1.html#createapplet>.

