
Generation of Titanic Prime Numbers through

High Performance Computing Infrastructure

Mentor: Mr. Je’aime Powell (ECSU)

Elizabeth City State University

Elizabeth City, NC 27909

Authors:

John Bell (MVSU), Matravia Seymore (ECSU), Joseph Jackson (MVSU)

Abstract - The focus of the project was to

generate a titanic prime number by using high

performance computing resources. What makes

prime numbers significant is their use in

modern computers for the encryption of data.

The generation of primes are particularly

computing intensive the larger the prime. This

makes titanic primes (thousand digit prime

numbers) a perfect candidate for distribution

through grid infrastructure. In order for the

demands of the project to be met, a prime

number generator had to be created. Multiple

computer languages such as Javascript, Java,

and C++ were tested for use in an attempt to

develop a generator. Functionality was verified

first through the terminal and then by job

submission to Elizabeth City State University’s

VikeGrid (a Condor based computer cluster).

Overall, the results indicated the successes of

the project and the improvements needed for

continued work.

Keywords - titanic prime, Mersenne prime,

cluster, VikeGrid, condor, Sieve of

Eratosthenes, terminal

I. Introduction

Samuel Yates first discovered titanic

primes in the 1980s. Yates defined a

titanic prime to be a prime number with

at least 1000 decimal digits. Mersenne

prime was named after Marin Mersenne,

a French monk who began the study of

these numbers in the early 1600's [1].

The largest known prime is over 2

million digits. Mersenne Primes was

applied to this research project because

they were used to find complex form of

prime numbers.

The process of seeking and discovering

new prime numbers became very

complicated as the numbers grew larger.

Unique patterns found in smaller primes

were harder to detect as well. This

complication led to the development of

numerous theories, algorithms, and

formulas proposed that could verify the

primality of a number. In order to

discover an unknown prime number,

some used visualization techniques.

There are many visualization resources

available such as Benford’s Law, Prime

Number Theorem, Euclid of Alexandria,

Pierre de Fermat, and Eratosthenes.

Currently, there is no official formula for

all prime numbers.

Prime number generators are critical

because they find primes in an efficient

manner through the use of computing

resources. Due to the wide variety of

programming languages available, each

generator had an unique source code. A

majority of them are based on the same

common theorems and algorithms. As

mentioned earlier, there is no definite

formula for finding all prime numbers.

As a result, all generators have

limitations. Limitations include the

number of primes that can be found as

well as the size of primes found.

Primes that are found by generators are

able to contribute to the encryption of

the data. Encryption refers to algorithmic

schemes that encode plain text into non-

readable form providing privacy. The

RSA (Rivest, Shamir, and Adleman)

system is the most popular cryptography

method. The security of RSA primarily

relies on the difficulty of factoring large

composite numbers. Two very large

prime numbers are found and multiplied

to create a composite number where the

primes are the only factors. Data is

secured because hackers have to defeat

the problem of factoring the resulting

composite number — given two

sufficiently large prime numbers. This

task is believed to be extremely difficult

to factor in a finite amount of time.

A. This project helped answer the

following questions

1. Was a titanic prime number

generated?

2. How to create a prime number

generator?

3. How to run a java and jar file from

terminal?

4.Was the job able to be submitted to the

VikeGrid?

II. Literature Review

Mersenne primes are named after Marin

Mersenne, a French monk who began

the study of these numbers in the early

1600's. A Mersenne number (M) is a

positive integer (P) that is one less than a

power of two, MP = 2
P
 – 1 [1] .The

largest known prime is the Mersenne

prime 2
6,972,593

– 1, a number with over 2

million digits. This is only the 38th in

the sequence of Mersenne primes.

It is known that the fastest way to

discover a Mersenne (Titanic) Prime is

to use the Sieve of Eratosthenes method.

First is the creation of a list of

consecutive integers from two to n (2, 3,

4... n). Then p is set equal to 2, which is

the first prime number. Canceling from

the list all the multiples of p less than or

equal to n (2p, 3p, 4p, etc.). Find the first

number remaining on the list after p.

That number will be the next prime and

will replace p. The steps 3 and 4 are then

repeated until 2p is greater than n. All

the remaining numbers in the list after

cancelling are considered Mersenne

primes [2].

The Great Internet Mersenne Prime

Search (GIMPS) was developed in 1996

as a cooperative venture in which people

volunteered unused time on their

personal computers to search for prime

numbers. A central server on the

Internet coordinated the efforts of those

participating, and recorded the results.

The Electronic Frontier Foundation

(EFF) offered a $100,000 prize to the

first person or group to find a prime

number with at least ten million digits.

 The current record-holding Mersenne

prime garnered a $50,000 prize from the

EFF [1].

On April 12
th

 2009, the 47th known

Mersenne prime, 242,643,801-1, a

12,837,064 digit number was found by

Odd Magnar Strindmo from Melhus,

Norway. It was the second largest

known prime number [2]. Odd was an IT

professional whose computers worked

with GIMPS since 1996 during which

time over 1400 candidates were tested.

The calculation took 29 days on a 3.0

GHz Intel Core2 processor. The prime

was first verified on June 12
th

 of the

same year by Tony Reix of Bull Serial

Attached SCSI (SAS) in Grenoble,

France used the Glucas program that ran

on Bull NovaScale HPC servers. One

featured Itanium2 CPUs and another

featured Nehalem CPUs. SCSI is a

http://www.google.com/url?q=http%3A%2F%2Fprime.isthe.com%2Fchongo%2Ftech%2Fmath%2Fprime%2Fm42643801%2Fprime-c.html&sa=D&sntz=1&usg=AFQjCNFjKYg3aGPHJamxbXVC4HFSNS5XcA
http://www.google.com/url?q=http%3A%2F%2Fprime.isthe.com%2Fchongo%2Ftech%2Fmath%2Fprime%2Fm42643801%2Fprime-c.html&sa=D&sntz=1&usg=AFQjCNFjKYg3aGPHJamxbXVC4HFSNS5XcA

Small Computer System Interface and

Serial Attached Storage(SAS) itself is a

data transferring technology that moves

data from various computer devices such

as hard drives. The Glucas program is a

free program to test the primality of

Mersenne numbers. The prime was later

independently verified by Rob Giltrap of

Sun Microsystems using Ernst Mayer's

Mlucas program running on a Sun

SPARC Enterprise M9000 Server. The

Mlucas program was similar to the

Glucas program except it used a

FORTRAN compiler [2].

Mersenne Primes are applied to this

project because they are used to find

complex forms of prime numbers. It is

possible for them to be found through

the use of a prime number generator [2].

Generators have the ability to perform

the task of finding prime numbers more

efficiently and effectively than humans.

This is possible when computing

resources are available and multiple

algorithms are used for verification.

Kerry Soileau’s generator (Figure 1)

proved to be useful for this project [3]. It

was created in javascript, a web-based

programming language. An appealing

feature of this program was that the

number of primes could be chosen.

However, the most appealing feature

was that the program eliminated the idea

of starting with an undesired number.

The program gave the option of

choosing a lower bound.

Figure 1

The aspects from these articles that were

used and analyzed for this project were

the basic knowledge of the use of prime

numbers, different methods and

formulas for finding primes, and the

prime number generator. Also, the use of

a lower bound in the generator was one

of the ideas implemented in the

program’s design.

III. Methodology

Multiple programming languages were

used for the project. The first language

used was javascript. The source code

from Kerry Soileau’s generator was

downloaded as a .class files. The class

files were then saved as Java files so that

they could be opened in an integrated

development environment (IDE). It was

then placed in the NetBeans IDE to be

compiled and tested to see if it was

usable for the long-term program that

was to be created. After much

experimenting, it did not work because

javascript is a web-based language. This

meant it could not be re-compiled into a

http://www.google.com/url?q=http%3A%2F%2Fhogranch.com%2Fmayer%2FREADME.html&sa=D&sntz=1&usg=AFQjCNEel3A4NF4X5g7Go5VFVmnkGyk2DQ
http://www.google.com/url?q=http%3A%2F%2Fhogranch.com%2Fmayer%2FREADME.html&sa=D&sntz=1&usg=AFQjCNEel3A4NF4X5g7Go5VFVmnkGyk2DQ

standalone program which is needed to

use with Condor.

Figure 2

The second programming language used

was Java. A prime number generator

based on probability testing was

constructed in the language. Probability

tests state that if a number is likely prime

or not. Sometimes composite numbers

are mistakenly reported as prime

numbers. These numbers are called

pseudoprimes. However, pseudoprimes

have rarely occurred in good probability

tests [4]. In Figure 2, primality testing

began on line 18 with a ―while loop‖, a

command performed if the statement

within parentheses is true. Therefore, the

loop was executed as long as the number

was less than or equal to the upper

bound. An ―if/else‖ statement was

inserted in the loop in order for the

process to be continued. The command

used the modulus operator (%) and the

AND operator (&&) multiple times in

the first section of the statement. Once

the number had been divided by the first

five prime numbers, the modulus

operator retrieves the remainder. If the

remainder was not zero for all five cases

then the number was formatted in

decimal notation to show all digits and

printed out as a prime number.

Otherwise, the number was incremented

by one and the new value would be

tested until the value was greater than

the upper bound.

After the source code was written, it was

then tested to see if it could be compiled

and executed in terminal.

A. Terminal/Command Line Steps for

Java File

1. Opened terminal in Mac OS X by

clicking the application icon on the

sidebar

2. Changed the directory to the desktop

with the following command:

cd\Desktop

3. Created a directory to hold the java

file with the following command: mkdir

Generator

4. Opened the terminal text editor and

named the file the following command:

nano PrimeNumberGenerator.java

5. Copied and pasted the source code

from NetBeans into the text editor and

saved it.

6. Compiled the PrimeNumberGenerator

with the following command: javac

PrimeNumberGenerator.java

7. Attempted to execute the file with the

following command: java

PrimeNumberGenerator

The failed attempt at execution

suggested that another route be taken.

The NetBeans IDE was opened and the

source code was recompiled into a jar

file, an alternative java format with

multiple java and class files compiled.

Upon completion, the IDE provided the

single line command for opening the jar

file in terminal. The file executed

successfully in terminal after the jar

command was entered. This led to

preparation for file submission into

condor.

For Condor to run the program, a

submission file was created. The

submission file was text file containing

the values of certain parameters, such as

the name of the program, the universe,

location, and files to be created that held

the log, output, and error information.

Universe = java

Executable = PrimeNumberGenerator.jar

Arguments =

Log = Generator.log

Output = Generator.out

Error = Generator.error

Queue 1

Table 1

Table 1 shows the information typed

inside the ―condorsub‖ submission file.

According the submission script, three

files were created and the generator was

to execute only one time. The command

condor_submit condorsub was entered in

for the submission of the prime number

generator. Unfortunately, it failed

because the parameters for arguments

could not be found.

Figure 3

A C++ project was then opened in

NetBeans so that the source code from

the original generator could be

converted. In Figure 3, the source code

did not differ much from the original.

The same actions were performed except

for one addition to the program. The

generator created a text file titled

primenumberlist containing the list of

numbers found. There two ways of

trying to compile the file that was used.

First, the command condor_compile was

used in terminal. Second, the C++

source code was compiled through the

terminal and automatically opened

which eliminated the need for manual

execution.

Universe = vanilla

Executable = PrimeNumberGenerator

Arguments =

Log = Generator.log

Output = Generator.out

Error = Generator.error

Queue 1

Table 2

Table 2 is the information

contained in the submission script for the

generator written in C++. The universes

changed from java to vanilla which

supports execution of standalone

programs. Also the file extension .jar

was removed because it was no longer a

jar file. Once the file was submitted, the

command condor_q was used to check

the status of the program. Two more

prime number generator would be

submitted in condor. However, all of

them would have different lower and

upper bounds. The first generator would

use 107 as the lower bound and 127 for

the upper bound. The second generator

used 607 as the lower bound and 1279

for the upper bound. Condor_q was used

throughout the execution of all three

generators to check their statuses.

IV. Results

A. Was a titanic prime number

generated?

A titanic prime number was not

generated. The lack of memory and

being unable to go over the data type

limit were the primary reasons for

this task failing.

B. How to create a prime number

generator?

● It was learned how to create a

prime number generator. Below

are results for the generators:

● The only generator to execute

and finish completely was the

original generator.

● The first two generators were

reported as running when the

condor_q command was used in

the terminal. However, the

second generator was reported as

idle. This was not unexpected

because it was known that the

generator was bugged to produce

some kind of error. The error

could be found with the bounds

that were chosen. The double

data type was only able to store a

number that contained up to 308

digits. Obviously, the value of

the number exceeded 308 digits

before it was even equal to the

upper bound.

● As mentioned earlier, the first

two generators were reported as

running by condor. However, the

generator with the lower bound

of 107 and the upper bound 127

did not have enough memory to

finish executing the program.

C. How to run a java and jar file from

terminal?

The ability to how to run a jar file

through terminal was acquired. It

uses the command java –jar

―filedirectory/file.extension‖. The

command Unfortunately, it was still

unknown why the java file did not

execute in terminal even thought it

could be compiled in NetBeans.

D. Was the job able to be submitted to

the VikeGrid?

The original generator in C++

could be submitted along with

the two tests.. It could be

compiled in the IDE and

terminal. Also, it executed

successfully in both as well. The

final step was also completed

when the generator could be

submitted to the VikeGrid

cluster.

E. Additional Results

It was found that condor_compile

could not be used in the

command line. The following

error message was given when

the command was entered: ―This

version of Condor does not

support checkpointing and

remote system calls on this

platform. You may only submit

"vanilla" jobs. Therefore, you do

not need to use condor_compile.

In fact, condor_compile can't

work, since there are no libraries

to re-link your job with. Please

see the Condor Manual for

details, which can b efound at

http://www.cs.wisc.edu/condor/m

anual‖

V. Future Work

A titanic prime was not found in this

project. In order to find a titanic prime,

there were several things that should be

considered:

1. The prime number generator was

able to execute successfully in

terminal as a jar file but it would

not run on condor. The correct

argument parameters should be

found if jar files are to be used in

future projects involving condor.

2. The double data type was used

numerous times in the source

code of the generator. It was the

double data type that could hold

the most digits. However, the

double data type has a limit of

308 digits. To find a titanic

prime, there must be a data type

to exceed this limit or an

alternative solution to hold more

than a thousand digits.

3. Although the generators were

able to be uploaded and executed

on condor, there was not enough

memory for the program to

finish. It recommended that

computers with above-average

memory be used. A second

method would be to find a way to

erase numbers out of memory

after they are stored. A final

method would be to utilize

parallel computing over

distribution (condor). Parallel

computing allows for a task to be

evenly divided among a cluster.

4. Condor_compile is a command

in condor that would have been

useful to ―re-link [the] program

with the condor libraries for

submissions into Condor

Standard Universe‖[5]. It offered

a feature called checkpointing,

which allowed for the status of

job to be displayed and restarted

at a certain point if the job was

accidently terminated. Full

installation of condor_compile is

needed for better job

management.

References

[1] "Mersenne Prime,"

MathemicalVignettes, [Online].

Available:

http://www.jcu.edu/math/vignettes/mers

enne.htm. [Accessed Jun. 23, 2008].

[2] ―47th Known Mersenne Prime

Found!‖ GIMPS, para 1., Oct. 29, 2009.

[Online]. Available:

http://www.mersenne.org/. [Accessed:

Jun. 24,2008].

[3] K. Soileau, ―Prime Number

Generator,‖ Java(TM) Boutique - Prime

Number Generator, [Online]. Available:

http://javaboutique.internet.com/prime_n

umb/2010. [Accessed: Jun. 8, 2010].

[4] E. Weisstein, ―Primality Test,‖

MathWorld—A Wolfram Web Resource,

para. 3, Apr. 30, 2002. [Online].

Available:

http://mathworld.wolfram.com/Primality

Test.html. [Accessed: Jul. 3, 2010].

[5] ―condor_compile,‖ [Online].

Available:

http://www.cs.wisc.edu/condor/manual/v

7.1/condor_compile.html.[Accessed: Jul.

5, 2010].

http://www.google.com/url?q=http%3A%2F%2Fwww.mersenne.org%2F&sa=D&sntz=1&usg=AFQjCNGsx8NR13tpw7uz-6B0TGo1hHjXOA
http://javaboutique.internet.com/prime_numb/2010
http://javaboutique.internet.com/prime_numb/2010
http://mathworld.wolfram.com/PrimalityTest.html
http://mathworld.wolfram.com/PrimalityTest.html
http://www.cs.wisc.edu/condor/manual/v7.1/condor_compile.html.%5BAccessed
http://www.cs.wisc.edu/condor/manual/v7.1/condor_compile.html.%5BAccessed

