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Abstract— In this report the team developed and 
analyzed several linear regression models to predict 
hospital stays (or length of Stay) of patients in the US using 
the SENIC project data from CDC-Atlanta. The team 
examined several potential exploratory variables and their 
relations with the response variable “Stay”, with the goal 
of determining what leading factors influenced the length 
of stay of patients in this Nosocomial (hospital acquired) 
infection control data. In particular, our report aimed at 
answering the following: given the data, what leading 
factors help explain the hospital stays of patients in US? In 
at least one model, the team found that Age and Regions 
influenced the variable “Stay” the most.  
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I. INTRODUCTION 
Due to budgetary concerns, hospitals, insurance company 

and other healthcare providers often seek ways to become 
more efficient. According to a report by Gonzalez [1], in 2011, 
hospital in-patient expenses accounted for almost one-third of 
all healthcare expenditures compared to prescription medicine 
which accounted for about one-fifth of total medical expenses 
in the United States. Few years later, in a brief statistical 
report [2], Weiss and Elixhauser noted that, in 2012, there 

were 36.5 million hospital stays in the US with an average 
length of stay of 4.5 days and with an average cost of $10,400 
per stay. Because hospitals and insurance providers often bare 
some of these costs, many hospitals are now looking for 
means to optimize their capacity by discharging patients on 
time and reduce patients’ readmission rate. Our objective in 
this report is to find some statistical relationship between 
hospital stays and some meaningful hospital-related variables 
and for this reason, from the research the team chose to 
explore a Nosocomial (hospital-acquired) Infection Control 
(SENIC project [3]) data. The team notes that the SENIC 
project original goal was to determine whether infection 
surveillance and control programs have reduced the rates of 
nosocomial (hospital-acquired) infection in United States 
hospitals. Because of its wide range of indicators or variables 
(12) its size (113 hospitals) and the reliability of its source 
(Center for Disease Control, Atlanta, GA [3]), the team 
deemed the SENIC project data valuable for our analysis. 
Thus, in this report the team developed and analyzed a 
statistical regression model to predict hospital stays of patients 
in the US using the SENIC project data. In particular, our 
report aimed at answering the following: given the data, what 
leading factors help explain the hospital stays of patients in 
US? All data exploration and analysis in our report were solely 
based on the SENIC data. 

 



 

 

II. METHODOLOGY 

SENIC PROJECT DATA 
This data set consists of a random sample of 113 hospitals.  

For each hospital, the following 12 variables (See Table 1, 
below) is provided in the order they appeared in the statistics 
textbook by Kutner et al. [4] (see Appendix C, page 1348). 
The data set contains no missing value although some scaling 
was found necessary for the purpose of our analysis.  

As mentioned in the introduction, for our analysis, the original 
SENIC project data was split into two data: The training data 
that the team called ENIC contains observations 1-70 and the 
testing data which the team called ENIC2 contains the 
remaining observations (71-113) from SENIC project. Our 
basic plots, model selection, and diagnostics were done based 
on ENIC while ENIC2 was used to help validate our final 
proposed model. The plots and the statistics were generated 
using the free statistical software R and the codes used are 
made available in the Appendix.  

EXPLOITATIONS OF SOME USEFUL VARIABLES 
 As previously mentioned, our data exploration was based 
on the ENIC data, which contains the first 70 observations of 
the SENIC project data. Here, the team explore some basic 
information about some of the variables that were later 
selected in section 2.3 to help build our model.  

 

“RESPONSE” STAY 
 Plot 1 summarizes some basic information about Stay. In 
plot 1(a), the team noticed that the hospital stays of patients is 
independent of time, suggesting that neither time nor a 
particular event (such as a disease outbreak) influenced the 
data record. Plot 1(b) indicates that the median of hospital 
stays is about 10 days. The minimum number of hospital stays 
is about 7 days and the maximum number of hospital stays is 
about 14 days. About half of the recorded number of hospital 
stays is between 9 and 11 days. Plot 1(c) shows that the 
distribution of the hospital stays is relatively normal with an 
average close to 10 days and the highest frequency on the 
record is from the group with 8-10 days of hospital stays. In 
Plot 1(d), the team see that hospital stays differ from region to 
region with the highest recorded being in Northeast (NE) and 
the lowest recorded being in the West (W). Also, the median 
hospital stays in Northeast (NE), North central (NC), South 
(S) and West (W) is about 11, 10, 9 and 8, respectively. 
Finally, each plot shows one hospital stay being an outlier 
(about 20 days) which comes from a hospital record in NE 
(See Plot 1(d)). 

 

“PREDICTOR” RISK 
 Likewise, as discussed in the previous section, the team 
examined Plot 2 for Risk. Plot 2(a) suggests that time was not 
a factor in the risk of infection record. Plot 1(b) indicates that 
the median risk of hospital-acquired infection in the US is 

about 4.5%. The minimum percentage of Risk is about 3% and 
a maximum of about 7%. Several outliers were spotted at 
around 1% and around 8%. Plot 1(c) shows that the 
distribution of Risk is normal with an average of 4.6% in US. 
In Plot 1(d), the team saw that Risk varies with region with the 
highest records coming from the Northeast (NE) and the 
lowest records coming from the south (S). The south and the 
west have the lowest median Risk with west showing the 
smallest range in Risk. Some outliers can be spotted for all 
regions except for the northeast. 

 

“PREDICTOR” CENSUS 
 Plot 3(a) also indicates that the average daily census record 
is independent of time. The median daily census is about 160 
patients in Plot 3(b) with a couple of potential outliers being 
reported, one from NE and the other from W as shown in Plot 
3(d). The minimum daily census is in the low 40’s while the 
maximum daily census is about 500 patients. Further, Plot 3(c) 
shows that the distribution of Census is right skewed and the 
Census average is about 205 patients (from computation). The 
most recorded Census is between 50-100 patients. In Plot 3(d), 
the team see that Census varies from region to region with the 
highest median being in Northeast (NE) and the lowest median 
being in the West (W). 

MODEL SELECTION PROCESS 
 Due to the large amount of candidate variables, the team 
relied primarily on the Mallows’ Cp selection criterion as a 
model-building technique to arrive at a list of “good” models. 
This selection method also allows to test whether or not there 
is a potentially “good” model that includes the variable Stay. 
Based on their Cp values (in general, the smaller, the better the 
model), the team selected the top three subsets of “good” 
variables and recorded them in Table 2. Clearly, each subset 
includes “Stay”, the variable the team wish to be for our model 
“response” variable. 

 
For each subset of variables shown in Table 2, the team used 
Stay as “response” and the remaining variables as “predictors” 
and fit a linear regression model for each case.  The team 
recorded the adjusted R2 values (in general, the higher, the 
better) for each model as shown in Table 3. 
 
Because the adjusted R2 values for the models are fairly close 
to one another, the team decided to look at their prediction 
sum of squares (PRESS) statistic as illustrated in Table 4, 
below. 
 
Since the team had no objective reason to go with a larger 
model, the team selected the model with the least PRESS 
value (in general, the smaller, the better) and the least amount 
of predictors (for the simplicity of the model) and called it 
Model 2. The team note here that PRESS is used not only for 
regression model comparison but also to assess a model’s 
predictive capability, which the team later discussed in section 



 

 

4.  
 
The team then decided to check the correlation factor for each 
pair of predictors in Model 2. Below is the correlation matrix 
with listed correlation coefficient (r) between each pair. 
 
 
The team note that the result in the Table 5 is also supported 
by the scatterplot from our R-output (see R-1 in Appendix). 
From this table, the team can observe that Stay is fairly related 
to Risk and Region. Also, Census appeared to be strongly 
related (r =0.93) to Nurses and the correlations among the 
remaining pairs of predictors is much weaker. For instance, 
Region is hardly related Nurses (r =-0.038) and Census (r =-
0.035) while, Risk is barely related to any other predictors (r 
<0.3).  
Due to the strong relation between Census and Nurses, the 
team decided to look at the model regression output to 
determine the significance of each variable. The regression 
output (See R-2 in Appendix) indicated that Census 
contributed significantly to the model (p-value= 0.03) while 
Nurses barely (p-value=.09), if both predictors were kept in 
the model. For this reason, the team dropped the predictor 
Nurses from Model 2 and denoted the resulting model, Model 
3, whose variables are Stay, Risk, Region, and Census. 
After dropping Nurses from Model 3, the variable Census 
became less significant (p-value=0.12) for our model (See R-3 
in Code, for the regression output). In other words, despite the 
fact the variable Risk and Region, each, achieved a statistical 
significance for the model, the variable Census did not, at 
alpha =0.05. Due to a strong relation between Nurses and 
Census from our earlier observation, the team had reason to 
believe that the number of nurses available in a hospital 
certainly affected not only the census registration but more 
importantly the length of stay of patients in the hospital; the 
less staff or nurses a hospital has the less likely they will keep 
patients longer in the hospital. So, the team decided to replace 
Census in the model by Nurses, and found that the predictor 
Nurses contribution to the model was significantly smaller 
(SSR=1.4) compared to the contribution of the variable 
Census (SSR=4.9). See ANOVA in R-3, for details. The team 
made a final decision (albeit with some doubt) to keep Census 
while being mindful that it “reflects” Nurses. 
 

CHECKING FOR ADDITIONAL POTENTIAL VARIABLES FOR 
MODEL 3 

The team decided to add some two-way interaction 
variable to Model 3 and check their significance to the model. 
Recall that interaction variables are often constructed by 
multiplying together the corresponding relevant variables. The 
team anticipated some structural multicollinearity issues to 
occur as a result of adding this new predictor to our model. As 
a remedy to this issue for our data, Kutner et al3 suggested 
“centering” the predictors, which is done by simply 
subtracting the mean of the predictor values in the data set 
from each predictor value. The team proceeded to “center” the 

predictors Risk, Census and denoted their corresponding 
centered variables Risk* and Census*, respectively, and the 
predictor Risk*Census* which depicts the interaction between 
“centered” Risk and “centered” Census.  The team chose to 
add asterisks (*) to each variable to make a distinction 
between the new variable and its raw or original form.  
The regression output (See R-4 in Appendix, or Table 6) of 
our new or updated Model 3 showed that there was a strong 
evidence (p-value= 0.029) for two-way interactions between 
Risk* and Census*. Due to the hierarchy principle2, from now 
on, the team will no longer be concerned with the significance 
of the variable Census* in our model since the interaction 
variable Risk*Census* is significant. Moreover, the team 
tested other two-ways interaction variables from the predictors 
listed in Model3—(See R-5 in Appendix) It was clear from 
these results that no other two-way interaction variable would 
be significant for the model, whether or not they are included 
as a single interaction term or along with other interaction 
terms. In fact, the team noticed with the interaction terms, 
some of the regions appeared significant while others were 
not. 
Also, the team checked whether or not a quadratic term for 
either Risk or Census would be significant. The regression 
outputs (See R-6 in Appendix) indicated that neither quadratic 
term was significant (p-value>.1) for our model (with or 
without the interaction term). Our final Model 3, includes 
therefore the following predictors, Risk*, Census*, 
Risk*Census*, Region and a summary of its regression output 
is shown in Table 6 and more details can be obtained with R-4 
in Appendix. 
mean (variable)) 
 
As the team settled on Model 3 (with the interaction term), the 
team decided to check whether or not it meets basic linear 
regression model assumptions. 
 

 

 

III. DIAGNOSTICS 
SOME USEFUL PLOTS 

From the regression output, the variables Risk* (or x1), 
Census* (or x2), Risk*Census* (or x1x2), Region explained 
about 50% of the reduction in variation of the average length 
of stay of the patients in the hospital. The model appeared to 
be significant (F-value=10.48, p-value<.001). The finding 
from the added-value plot (See Plot 4, below) also supported 
the parameters estimates (See Table 6, for instance) of our 
linear regression model and the significance of each predictor 
for the model. For instance, from Table 6, the estimated 
regression coefficient for Risk* (x1) was positive (.78) and 
was certainly the largest. From Plot 4, looking at the first of 
the six plots (Top left), Stay increases as x1 increases given 
the effect of other predictors being held constant and the slope 
of line illustrating their relationship was the steepest. 



 

 

VARIANCE INFLATION 
The variance inflation factor for each predictor of model, 

as illustrate in Table 7, is quite small, hence the team 
considered it satisfactory for the model. 

 

RESIDUALS 
 The residual vs fit plot (See Plot 5) shows that the 
residuals appeared randomly scattered (in a “horizontal band”) 
around the 0 line. This suggests that the relationship between 
Stay and the indicated variables in the model is in fact linear 
and the variances of the error terms are constant. Furthermore, 
the normal probability plot (See Plot 6) suggests that the error 
terms are normally distributed. Thus, the team concluded that 
Model3 met the required assumptions for a linear regression 
model and its fitted regression function is given by 
Stay=11+0.8Risk*+0.002Census*+0.003Risk*Census*-
0.96NC-1.2S-2.2W, where 

Stay is the average hospital stays, Risk* is the centered 
infection risk, Census* is the centered Census, and NC, S, and 
W, represent the north central, the south and the west regions, 
respectively. 

SOME BASIC INTERPRETATIONS 
Recall that from ENIC, the average risk of infection is 4.6% 
and the average daily census is 205 patients. Our model shows 
that if either the infection risk is at 4.6% or the daily census is 
about 205 patients, then the team can expect the hospital stays 
to be about 10.6 days, 9.6 days, 9.4 days, and 8.4 days, for the 
northeast, north central, south and west regions, respectively. 
Moreover, when considering, say, the effect of infection risk 
(Risk) on the hospital stays (Stay), the team can expect that for 
each percent increase in the infection risk beyond the average 
4.6%, the hospital stays increase/decrease by 0.78 
+0.003Census*, -0.96 +0.003Census*, -1.2 +0.003Census*,             
-2.2+0.003Census*, for the northeast, the north central, the 
south, and for the west regions, respectively.  It is clear that 
due to the interaction between Risk and Census, the effect of 
Risk on Stay depends on Census and likewise the effect of 
Census on Stay depends on Risk which can easily be verified.    

 
  

 

 

OUTLIERS AND INFLUENTIAL POINTS 
 As it can be observed in the previous two plots, there is 
some indication that ENIC contains at least one outlier and 
previous plots (See Plots 1-3, for instance) also support this 
finding. Further analysis (See R-7 in Appendix or Plot 7, for 
instance) also suggested that case #47 is a potential high 
leverage point. To see whether or not it had any significant 
influence on our model, the team proceeded to drop case #47 
from ENIC. The new regression output (See R-8 in Appendix) 

indicated that there was no significant change in the parameter 
estimates, not even in the R2 value. Further, the team had no 
objective reason to believe that this observation was recorded 
in error nor do the team think it was not representative of the 
SENIC project original data. For these aforementioned 
reasons, the team decided to keep this hospital record with our 
final model, Model 3 and proceeded to test its predictive 
ability. 
 

IV. MODEL VALIDATION 
INTERNAL AND EXTERNAL VALIDATION 
 Here the team check the predictive capability of our final 
model, Model 3 (or Training) whose variables are Stay, Risk*, 
Census*, Risk*Census*, and Region. As stated in the 
introduction, for testing, the team used ENIC2 data, whose 
entries are observations 71-113 from SENIC. For this reason, 
the team calculated the prediction errors which are the 
differences between the actual response values in ENIC2 and 
the predictions by Model 3, and summarized the predictive 
ability of Model 3 by the mean squared prediction error 
(MSPR).  The team found (see R-9, in Appendix) that MSPR= 
3.057, giving an indication of how well Model 3 will predict 
in the future. When compared it its Mean Square Error 
(MSE=1.889), the team found no significant difference 
between these two values. For a further test on the predictive 
capability of Model 3, the team decided to fit the regression 
model identified by our model selection process to ENIC2, our 
testing dataset. The team compared the estimated regression 
coefficients and the estimated standard errors of both models. 
Below (Table 8) is a summary. 

 

 

These estimates appear to be reasonably similar across all 
estimated parameters. This is good evidence that Model 3 can 
be applied to data beyond ENIC. The team also observed that, 
the standard error of model Training (1.37) was fairly closed 
to that of Model Testing (1.11). For further details of these 
values, see R-10 in Appendix. In addition, the team decided to 
compare Model 3 to a formerly proposed model in the next 
section. 

A KNOWN OR PROPOSED MODEL 
 The SENIC project data had been assigned to some 
members of this group project at first as an exercise. Several 
models the were proposed for predicting the average length of 
stay of patients in the SENIC data. The work involved some 
basic data plots, model comparison and some analysis of the 
statistical significance of the predictors of each proposed 
model. One final model was recommended which, for the 
purpose of this report, the team called Model B. First, here is 
some basic information about Model B and how it was 
obtained. 

Model B had the following predictors: Stay (as response 
variable), Age, Risk, Census. This model was based on the 



 

 

SENIC project data (with observations 1-113) and it was built 
as follow: The team started with two sub-models and for 
convenience the team called them Model B1 and Model B2. 
Model B1 had predictors Age, Risk and Services for the 
response Stay, and Model B2 had predictors Beds, Risk and 
Services for the response Stay. The coefficient of multiple 
determinations (R2) for these models turned out to be the same 
(about 0.32) and it was decided to consider a starting model 
which the team called Model B0. Model B0 had Age and Risk 
as predictors for the response Stay. Then, for each of the 
following predictors, Routine Culturing, Routing Chest X-ray, 
Census and Nurses, the team computed and compared their 
marginal contribution to Model B3. Variable Census 
contributed the most (about 13%) to Model B0. The final 
model B had Age, Risk and Census as predictors for the 
response Stay 

 

 

MODEL COMPARISON 
The team note here that, after getting our final Model 3, 

the team went back and randomly selected seven other 
potential model that were initially identified through our 
original Mallows’ Cp selection process.  The team did not see 
any evidence that they were better; their R2 values were 
significantly lower with higher MSE and, in many cases, one 
or more predictors from each model were statistically 
insignificant at α = 0.05. For any further interest or details on 
these fitted regression models, please see R-11 in Appendix. 
The team also noted that, based on its coefficient of multiple 
determinations, Model B also appeared to be better compared 
to the seven models the team previously referred to. The 
regression output for Model B and its ANOVA result can be 
obtained from R-12 in Appendix. 

So the team decided to compare Model 3 to Model B on 
the basis of their overall predictive capability. The results are 
presented in Table 9. These values, particularly PRESS and 
Predicted R2 (R2pred =1-PRESS/SSTO) indicated that Model 
3 is a better predictive model of Stay, even though Model 3 
was built on fewer observations (70 observations) compared to 
Model B (113 observations). Observe that for both models, R2 
is not quite high relative to R2pred, an indication that neither 
model is “overfitting”, i.e., using more predictors (whether 
useful or not) that they actually needed. 

 
 

 

V. CONCLUSION AND DISCUSSION 
 

In order to find what predictors help explain patients 
hospital stays (or Stay) in the SENIC project data, Mallows’ 
cp selection criterion along with adjusted R2 and their PRESS 
information were used as the main model-building techniques. 
The SENIC data was divided into two groups, ENIC (for 

training) and ENIC2 (for testing). Our selection (on ENIC) 
process began with the following pool of variables Stay, Age, 
Risk, Culturing, X-ray, Beds, Affiliation, Region, Census, 
Nurses, Services. Our process initially yielded 3 sub-models 
from which the team determined based on the adjusted R2 and 
the PRESS values, one single “best” model. This model 
contained the response variable Stay and the predictors Risk*, 
Census*, Risk*Census*, and Region where (*) indicate that 
these variables are “centered”. The team tested and found that 
there was a significant linear regression relationship between 
the response variable Stay and these predictors. Our analysis 
of the model suggested that about 50% of the variation in 
hospital stays (Stay) could be explained by the infection risk 
(Risk*), the average number of daily census (Census*) and the 
geographic region (Region). The team were surprised to see 
that Age was not a significant predictor for Stay even though 
the team would naturally think that older patients are more 
likely to have longer hospital stays than younger ones. 
Another surprise from our data exploration of Stay indicated 
that the average hospital stays in the US is almost 10 days, 
which is unusually high (more than twice the reported average 
in a recent report [2] as mentioned in the introduction). In fact, 
the team actually checked the mean of hospital stays for the 
SENIC project data and observed a similar value (9.6 days). 
The team had no knowledge of the cause of this significant 
difference in this mean value (compared to an earlier report 
[2]) and certainly our model did not intend to determine the 
cause of hospital stays. One unusually high hospital stays case 
was reported by one hospital (ID 47) in the northeast and yet it 
had no unduly influence on our model so the team included 
their record also in our final model analysis. A reasonable 
argument could be made to delete this hospital record, say, the 
team wanted to limit our final analysis to hospitals for which 
the Stay is less than 14 days (according to ENIC data). In the 
end the team did not think such limit on the training data 
ENIC was needed and could increase our prediction error, 
particularly when the validation data (ENIC2) had several 
records of 15 days or more of hospitals stays. To further 
determine the predictive capability of our model, the team 
chose to compare it to a known model (from a past project) 
and the team found some evidence that our final model not 
only was better, but also shows some signs that it could be 
applied to data beyond ENIC. 

Throughout our model selection process, the team 
had strived not to exclude any important predictor (to avoid an 
“underfitted” model) while keeping the model simple with the 
least possible amount of predictors (to avoid an “overfitted” 
model). The team did not think that adding any new or 
replacing an existing predictor would improve the overall 
significance of our final model and yet, the team are mindful 
that there is no “perfect” model.  A further analysis with the 
goal of arriving at an improved linear regression model 
(compared to Model 3) would perhaps be to test other two-
way interactive variables (using other predictors) to see 
whether or not there is a possible reduction in the overall 
prediction error of the model. Also, although the team found 
that a second-order regression model was not appropriate for 



 

 

our model with the selected predictors, the team could not rule 
out such order if one considers other predictors for the model 
and perhaps more data is needed to create a better predictive 
model.  
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Appendix 
R-codes for the Analysis of Hospital Stays in a Nosocomial Infection Control data 
#reading a txt table with header 
ENICall<-read.table("hospital-all.txt",header=TRUE) 
#attach(ENICall) 
#splitting data 
ENIC = ENICall[1:70,] 
ENIC #verifying the content of the data 
#creating variables 
Stay<-ENIC$Stay 
Age<-ENIC$Age 
Risk<-ENIC$Risk 
Culturing<-ENIC$Culturing 
Xray<-ENIC$Xray 
Beds<-ENIC$Beds 
Affiliation<-ENIC$Affiliation 
Region<-ENIC$Region 
Census<-ENIC$Census 
Nurses<-ENIC$Nurses 
Services<-ENIC$Services 
#####################plots of Stay 
par(mfrow=c(2,2)) 
plot(Stay, main="(a) Hospital stays in time", xlab="Time",ylab="Hospital Stays (in days)") 
boxplot(Stay, main="(b) Hospital stays in the US") 
hist(Stay, main="(c) Histogram for hospital stays") 
boxplot(Stay[Region==1], Stay[Region==2],Stay[Region==3],Stay[Region==4],main="(d) Hospital stays per region", 
names=c("NE","NC","S","W"),ylab="Hospital stays (in days)") 
mean(Stay) #9.8 
summary(Stay) 
IQR(Stay) 
#####################plots of Risk 
par(mfrow=c(2,2)) 
plot(Risk, main="(a) Nosocomial infection risk in time", xlab="Time",ylab="Infection risk (in percent)") 
boxplot(Risk, main="(b) Nosocomial infection risk in the US") 
hist(Risk, main="(c) Histogram for Nosocomial infection risk") 
boxplot(Risk[Region==1], Risk[Region==2],Risk[Region==3],Risk[Region==4],main="(d) Nosocomial infection risk per 
region", names=c("NE","NC","S","W"),ylab="Infection risk (in percent)") 
mean(Risk) #4.6% 
summary(Risk) 
IQR(Risk) 
#####################plots of Census 
par(mfrow=c(2,2)) 
plot(Census, main="(a) Daily Census in time", xlab="Time",ylab="Patients daily census") 
boxplot(Census, main="(b) Patients Daily Census in US") 
hist(Census, main="(c) Patients Daily Census") 
boxplot(Census[Region==1], Census[Region==2],Census[Region==3],Census[Region==4],main="(d) Daily Census per region", 
names=c("NE","NC","S","W"),ylab="Patients daily census") 
mean(Census) #205 
summary(Census) 
IQR(Census) 
#verifying the content of the table 
#names(ENIC)<-c("ID","Stay","Age", "Risk", "Culturing", "Xray", "Beds", "Affiliation", "Region", "Census", "Nurses", 
"Services") 
pairs(Stay~Age +Risk+Culturing+ Xray +Beds+ Affiliation+Region+Census+Nurses+Services,main="Scatterplot matrix for 
SENIC project data") 
#Stay Risk    Census Nurses   



 

 

#model selection 
library(leaps) 
X<-ENIC[,3:12] 
Y<-ENIC[,2] 
#-Mallows Cp  is finding a single best model 
bestmodel=leaps(X,Y, names=names(ENIC)[3:12], method="Cp") 
bestmodel$which[ order( bestmodel$Cp ), ] 
#To print Cp criterion in increasing order 
sort( bestmodel$Cp ) #smallest cp values 4.298737  4.576915  4.970154 
#   Age  Risk Culturing  Xray  Beds Affiliation Region Census Nurses Services 
#6   TRUE  TRUE     FALSE  TRUE FALSE       FALSE   TRUE   TRUE   TRUE    FALSE 
#5   TRUE  TRUE     FALSE FALSE FALSE       FALSE   TRUE   TRUE   TRUE    FALSE 
#4  FALSE  TRUE     FALSE FALSE FALSE       FALSE   TRUE   TRUE   TRUE    FALSE 
 
#candidate variables: Age  Risk 
#modelA: Age+Risk+X-ray+Region+Census+Nurses 
#modelB: Age+Risk+Region+Census+Nurses   modelA minus X-ray 
#modelC: Risk+Region+Census+Nurses      modelA minus X-ray minus Age 
 
####################################################################################### 
#some test models 
modelA<-lm(Stay~Age+Risk+Xray+factor(Region)+Census+Nurses) 
modelB<-lm(Stay~Age+Risk+factor(Region)+Census+Nurses)#modelA minus X-ray 
modelC<-lm(Stay~Risk+factor(Region)+Census+Nurses)#modelA minus X-ray minus Age 
summary(modelA) #Multiple R-squared:  0.5115 
summary(modelB) #Multiple R-squared:  0.493 
summary(modelC) #Multiple R-squared:  0.4736 
 
################################################################################## 
#picking the better submodel 
sum((modelA$residuals/(1-hatvalues(modelA)))^2) #PRESSpA 151.0711 
sum((modelB$residuals/(1-hatvalues(modelB)))^2) #PRESSpB 150.7552 
sum((modelC$residuals/(1-hatvalues(modelC)))^2) #PRESSpB 148.574 
################################################################## 
#R-1-checking correlation 
pairs(Stay~Risk+Region+Census+Nurses,main="Scatterplot matrix for Model 2") 
# Census appears to be strongly correlated with Nurses 
#upon checking the marginal contribution of Census and Nurses, the team decided to drop Nurses and keep 
c1 <- data.frame(Stay, Risk, Region,Census, Nurses)  #correlation coefficients 
cor(c1) 
#R-2############################### 
modelC<-lm(Stay~Risk+Census+Nurses+factor(Region))#modelA minus X-ray minus Age 
summary(modelC) #Adj Rsq 0.4412  Rsq 0.4736, 
#####MODEL2################################################################################# 
#R-3############## 
model2_c<-lm(Stay~Risk+factor(Region)+Census) 
summary(model2_c) # Rsq Adj: .4179  Multiple R-squared:  0.460 
anova(model2_c) #Census SSR 4.97 
model2_n<-lm(Stay~Risk+factor(Region)+Nurses) 
summary(model2_n) #Rsq Adj .4 and Rsq .44 
anova(model2_n) # Nurses SSR 1.46 
############MODEL3#################################################### 
#centering and renaming variables 
x1<-(Risk-mean(Risk)) 
x2<-(Census-mean(Census)) 
x1x2<-x1*x2 
x3<-factor(Region) 



 

 

x1x3<-x1*x3 
x2x3<-x2*x3 
#R-4 ###########Model 3 with interactive term: FINAL MODEL 
model3<-lm(Stay~x1+x2+x1x2+factor(Region)) 
summary(model3) 
#R5##############checking other interactive terms 
model4<-lm(Stay~x1+x2+x1x2+factor(Region)+x1*factor(Region)) #Risk and Region interaction term 
summary(model4) 
model5<-lm(Stay~x1+x2+factor(Region)+x1x2+x2*factor(Region)) #Census and Region interaction term 
summary(model5) 
model6<-lm(Stay~x1+x2+factor(Region)+x1x2+x2*factor(Region)+x1*factor(Region)) #three interaction terms 
summary(model6) 
model7<-lm(Stay~x1+x2+factor(Region)+x1*factor(Region)) #Risk and Region interaction term only 
summary(model7) 
model8<-lm(Stay~x1+x2+factor(Region)+x2*factor(Region)) #Census and Region interaction term only 
summary(model8) 
#R6#####testing quadratic terms for model 3 
x1sq<-x1^2  #Risk sq 
x2sq<-x2^2   #Census sq 
model3A<-lm(Stay~x1+x2+x1x2+factor(Region)+x1sq) 
summary(model3A) 
model3B<-lm(Stay~x1+x2+x1x2+factor(Region)+x2sq) 
summary(model3B) 
model3C<-lm(Stay~x1+x2+factor(Region)+x1sq) 
summary(model3C) 
model3D<-lm(Stay~x1+x2+factor(Region)+x2sq) 
summary(model3D) 
########MODEL ASSUMPTIONS ######################################################################## 
par(mfrow=c(1,1)) 
plot(model3$fitted,model3$residuals, main="Residual Plots vs Fitted values", xlab="fitted values", ylab="residuals") 
plot(model3$residuals, type='l',main="Residual Plots vs Fitted values", xlab="fitted values", ylab="residuals") 
qqnorm(model3$residuals, main="Normal Q-Q") 
qqline(model3$residuals) 
########FITTED MODEL PARAMETERS################################################### 
#pairs(Stay~Risk+Region+Census+X1X3,main="Scatterplot Matrix for Model 2") 
summary(model3)$coefficients[,1] #extracting coefficients 
#Avearage Stay=10.620648626 +0.781184591Risk 0.001769013Census -0.959352302(Region)2 -1.244375962(Region)3 -
2.223746724(Region)4 -0.011152462Census+ 0.002805531Risk*Census 
###################################added variable plot 
avPlots(model3, id.n=5, id.cex=.8) 
coef(model3) 
#the plots support the linear model. From the estimated parameters of the regression output, 
#Y decreases as X1 ( similarly X2, X3) increases, given other variables are being held constant.  
#This is also true for each added value plot 
+-########################################## variance inflation factors  
  #check VIFs ARE GOOD 
  vif(model3) 
  summary(model3) #Multiple R-squared:  0.4996, Adjusted R-squared:  0.452 
anova(model3) #MSE 1.9  Residual standard error: 1.373  
#F-statistic: 10.48 on 6 and 63 DF,  p-value: 4.877e-08 
 
#R-7Influential points###################### 
summary(influence.measures(model3)) #possible influential points are 47, 53 
round(dffits(model3),2) #confirms 47 with dffits=2.69 
## Assessing Outliers 
boxplot(Stay, main="Average length of stay of the patients in the hospital", ylab="Length of stay") 
outlierTest(model3) # Bonferonni p-value for most extreme obs  #47 is an outlier 



 

 

qqPlot(model3, main="QQ Plot") #qq plot for studentized resid  
leveragePlots(model3) # leverage plots 
plot(model3, which=4, cook.levels=cutoff)  #confirms #47 as influential 
#R-8 model 3 with deleted row 47 #########################################MODEL 3 with deleted row 7 
summary(model3) #Multiple R-squared:  0.503, Adjusted R-squared:  0.4565 
anova(model3) #MSE 1.9  Residual standard error: 1.384  
#F-statistic: 10.66 on 6 and 63 DF,  p-value: 3.82e-08 
##VALIDATION MODEL########################################################################### 
ENIC2<-ENICall[1:70,] 
#testData<-ENICall[1:70,] 
#newtestData<-data.frame(Stay, Risk,Region,Census, data=testData) 
#####EXTENDING COLUMNS############################################################ 
testData<-ENIC2 
#attach(testData) 
Y1<-testData$Stay 
X1<-testData$Risk 
X2<-testData$Census 
testDatA<-(round(within(testData,centered_Risk<-(X1-mean(X1))),1))#including centered risk in testData 
testDatB<-(round(within(testDatA,centered_Census<-(X2-mean(X2))),1)) #including centered Census in testData 
testDatB 
testData3<-(round(within(testDatB,Risk_Census<-(centered_Census)*(centered_Risk)),1)) #including centered Census in 
testData 
####CREATING INDICATORS########################################################### 
#creating NE indicator variable 
testData3$NE<-0 #assigning 0 to NE 
testData3$NE[testData3$Region==1]<-1 #NE indicator 
#creating NW indicator variable 
testData3$NW<-0 #assigning 0 to NE 
testData3$NW[testData3$Region==2]<-1 #NW indicator 
#creating S indicator variable 
testData3$S<-0 #assigning 0 to NE 
testData3$S[testData3$Region==3]<-1 #S indicator 
#creating W indicator variable 
testData3$W<-0 #assigning 0 to W 
testData3$W[testData3$Region==1]<-1 #W indicator 
testData_update<-testData3 
testData_update 
#verifying the categorical data entries 
v<-testData_update$Stay 
v1<-testData_update$centered_Risk 
v2<-testData_update$centered_Census 
v1v2<-testData_update$Risk_Census 
v3<-testData_update$Region 
r1<-testData_update$NE 
r2<-testData_update$NW 
r3<-testData_update$S 
r4<-testData_update$W 
#R9########### computing MSPR 
X.1v <- cbind(rep(1,length(v)),v1,v2,v1v2,r2,r3,r4) 
X.1v 
b.1t<-coef(model3) #beta hats 
(yhat.1v <- X.1v %*% b.1t) #fitted values 
(MSPR.1v <- sum((v-yhat.1v)^2)/length(v)) #MSPR 3.057 MSE 1.889  is generalizable 
training<-model3 
testing<-lm(v~v1+v2+v1v2+factor(v3)) 
#R-10################################# 
anova(training) #MSE:1.886  PRESS=147.7434  SSTO=237.475  R-sq pred=1-PRESS/SSTO=.378 



 

 

#compared to for Model B#PRESS= 269.6774 SSTO=409.211 R-sq pred=1-PRESS/SSTO =.341 
anova(testing)  #MSE: 1.241    
summary(training) # RSE#1.37 R-sq .5 
summary(testing) # RSE# 1.11 R-sq: .7 
coef(training)   
#(Intercept)              x1              x2            x1x2 factor(Region)2 factor(Region)3  
#10.620648626     0.781184591     0.001769013     0.002805531    -0.959352302    -1.244375962  
#factor(Region)4  
#-2.223746724  
coef(testing) 
# (Intercept)           v1           v2         v1v2  factor(v3)2  factor(v3)3  factor(v3)4  
#10.706003392  0.707053034  0.002151941  0.002584325 -1.389489215 -1.704781173 -2.608261439  
############################some extra analysis 
hist(Stay) 
#R-11#########################testing other submodels 
trainingData<-ENICall[1:70,] 
Training1<-lm(Stay~x1+factor(Region)) 
summary(Training1) 
anova(Training1)#0.4392, Adjusted R-squared:  0.4047 MSE 2.049 
Training2<-lm(Stay~x1+Culturing+factor(Region)) 
summary(Training2) #culturing not significant 
anova(Training2)#0.4392, Adjusted R-squared:  0.4047 MSE 2.049 
Training3<-lm(Stay~x1+Xray+factor(Region)) 
summary(Training3) #Xray not significant 
anova(Training3)#0.44, Adjusted R-squared:  0.4047 MSE 2.049 
Training4<-lm(Stay~x1+Beds+factor(Region)) 
summary(Training4) #significant at .18 
anova(Training4)#0.45, Adjusted R-squared:  0.4047 MSE 2.049 
Training5<-lm(Stay~x1+Census+factor(Region)) 
summary(Training5) #significant at .12 
anova(Training5)#0.46, Adjusted R-squared:  0.4047 MSE 2.049 
Training6<-lm(Stay~x1+Nurses+factor(Region)) 
summary(Training6) #NOT significant  
anova(Training6)#0.46, 
Training7<-lm(Stay~x1+Services+factor(Region)) 
summary(Training7) #NOT significant  
anova(Training7)#0.46 
#R-12#### Exercise model summary 
modelB<-lm(Stay~Age+Risk+Census) 
anova(modelB) #PRESS= 269.6774 SSTO=409.211 R-sq pred=1-PRESS/SSTO =.341 
summary(modelB) 
anova(model3) #Risk SSR 67.24  SSTO: 237 
sum((testing$residuals/(1-hatvalues(testing)))^2) #PRESS for testing 
 

 


