

An Integrated Approach for Software Safety Analysis

Fayokemi Ojo 11, Tangee Beverly 2, and W. Eric Wong3

1Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County,
2Department of Computer Science, Elizabeth City State University
3Department of Computer Science, University of Texas at Dallas

Abstract - Software safety analysis as we know it does
not look at functional and safety requirements
simultaneously. Functional specifications are typically
modeled with a UML state diagram and a Fault Tree
Analysis (FTA) is generally used to delineate the causes
of hazards. By using an integrated approach, a more
thorough look into possible system failures is produced.
In other words, creating a model that shows how a
system is designed to work, while also describing where
issues can occur, leads to a better, safer system. A case
study is done using a stair-climbing wheelchair.
Functionality and safety hazards are modeled after the
case study. The immediate research goal is to create a
new model that combines the case study diagrams
together. This goal was met and the new model gave
more insight into possible failures than the FTA and
UML state diagram did individually. The next step is to
use this method on a different system. Eventually, a
model will be created that can be used with any safety-
critical system.

Keywords –Software Safety, Software Reliability, Fault
Tree Analysis, UML Statechart Diagram

I. INTRODUCTION

Software has been built into more and more products
and systems used by the public. In most cases, the
integration of software helps make tasks easier for
human beings. In some cases, however, software can
cause unforeseen problems and possibly even put the
user in danger. There are some safety processes to
help prevent a risky event. One of them is the fault
tree concept, which a fault tree has the capability of
providing useful information concerning the
probability of a failure and by which a failure can
occur. State machines are a formalism that has been

widely applied to the functional specification of
software. Operational or intended behavior of the
system often focuses with the modeling
statecharts[2]. Engineers with a variety professional
background use fault trees and state machines.

II. METHODOLOGY

We started our research by looking into FTA and
UML statechart diagrams. Once we had a basic
understanding of how these diagrams worked, we
started researching how the two could be combined.
We found amalgamation was possible by integrating
gates and events from the fault tree into the
statechart. The next step was finding what these
diagrams could be modeled after and a bulk of this
research was spent looking for a case-study. This
entire project is centered around software safety, so
we had to find a safety-critical system. The goal was
to use newer technology that could still be in
development. This way we could see if the modified
state machine actually made the system safer.
However, time limitations kept us from having a
contract with a manufacturer in order to get all the
information required for the modified state machine.
We altered our initial goal to include newer
technology that was available to the public, so that
more information on the system would be available.
Eventually, the stair-climbing wheelchair was
selected as our case study.

III. Fault Tree Analysis

In 1962, Bell Telephone Laboratories developed fault tree
analysis for the U.S. Air Force. Every major failure is
represented in a safety critical system. It is another
technique for reliability and safety analysis [3]. Fault tree
describes how the individual fault components combine to
result in an undesirable system behavior or catastrophic

failure [2]. A fault tree is composed of nodes, edges, and
gates. A gate is a logical connective, nodes are events that
are considered as gate inputs, and lastly edges connect
nodes to gates [2]. There are various types of gates to be
used in the fault tree, but in this paper, we focused on a few
in our research. Fault trees has many benefits it creates a
visual record of a system that shows the logical
relationships between events and causes lead to potential
failures [1]. It advises others to immediately understand the
result of your analysis and pinpoint the weakness in the
design and identify errors [1]. Fault tree diagram is used to
help design quality tests and maintenance procedures [1].
Fault tree analysis is definitely useful in engineering,
especially in industries where a potential failure can have
some catastrophic consequences such as nuclear power,
automotive, and aeronautics [1]. However, in a complex
system, a fault tree analysis can also be used during
software development to debug [1]. Below is a chart of the
different gate symbols (figure 1). There are a lot more tree
blocks for a fault tree than the ones down below and we did
use all the blocks in our research [4].

AND All input events TRUE

OR At least one input event
TRUE

PRIORITY
AND

The output event occurs if
all input events occur in a
specific sequence

NOT The output event occurs if
the input event does not
occur.

 Figure 1. Fault Tree Blocks

IV. UML Statechart Diagram
A UML statechart diagram is an interactive model that
depicts the functional specifications of a system and it is
composed of states, transitions, and events [2]. A statechart
diagram defines the states; it is used to model the lifetime
of an object’s existence. States are components and
subcomponents of a system. Transitions is the movement
between states from one state to another state. Lastly,
events trigger these transitions [2]. Statechart diagram
defines the flow of control from one state to another state.
They are also used for forward and reverse engineering of a

system. The following points should be clarified before
drawing a statechart diagram: identify the objects, states
and events. The first initial state is a small black circle in
the diagram which where the process starts. Next couple
states are arrived for events and responsible for the state
changes of order object. Harel introduced statecharts as an
extension to state machines. The goal was to represent the
behavior of complex systems, in a comprehensible form
without suffering from explosion in the number of states
and edges [2]. Statecharts were intended to be formalism or
a language that can be compiled and executed not a
specification tool. Harel initial did not define semantics for
the statecharts but as they became more popular and useful,
semantics were introduced [2].

V. Case Study

As mentioned in a previous section, our case study is a
stair-climbing wheelchair. There are many types of stair
climbing wheel chairs, but this case study looks specifically
at battery-powered wheelchairs with a conveyor belt. The
first question we asked ourselves while analyzing this
wheelchair is, what are something’s that can wrong? In
other words, how can the wheelchair fail? To answer that
question, we realized that we also had ask ourselves, “how
does this wheelchair function?” That is when we realized
that there is a real benefit from putting functional and
safety requirements together. We researched different
brands of stair-climbing wheelchairs, but gather most of
information from the Scewo brand. We watched their
videos to see how the wheelchair worked. We constructed a
fault tree and a state diagram based on our observations.

Figure 2. The Fault Tree model for stair climbing
wheelchair

We kept the fault tree relatively simple and we only use
“and” and “or” gates. We found that many stair-climbing
wheelchairs are not meant to climb all staircases. There is
typically a slope limit and a maximum step height. If the

user is not careful it can cause safety hazards. The user also
needs to make sure that the wheelchair is properly charged
and maintained in order to avoid safety hazards. The fault
tree we created portrays a general idea of possible
undesired behavior that can occur when using this
wheelchair. The statechart we constructed only shows the
desired behavior when the chair is in climbing mode.

Figure 3. The first state chart diagram of stair climbing
wheelchair.

Figure 4. The modified statechart stair-climbing
wheelchair.

We modified the first statechart by integrating some gates
and events from the fault tree into the statechart. Due to the
fact that we did not have access to how software was used
in the wheelchair, the result is not as detailed as we would
have liked. And because of the contrasting ways we created
the fault tree and the state chart, we could not integrate
every event and gate. However, the modified statechart
shows that desirable and undesirable traits can be integrated
and that was one of the biggest goals of this project.

VI. RESULT & CONCLUSION
In this paper, we analyzed how functional and safety
requirements could be integrated. We found not only is it

possible, but doing this gives a more in-depth look into
possible hazards that by looking at these two things
separately. If systems are designed with safety features in
mind rather than just tested for problems later in the system
development lifecycle, then money, time and even lives
could be saved.

VII. Acknowledgment
Fayokemi Ojo and Tangee Beverly conducted this work
during the 2017 REU (Research Experiences for
Undergraduates) summer program under the supervision of
Professor W. Eric Wong at the University of Texas at
Dallas. The National Science Foundation funds the
program. More details of our REU program can be found at
http://paris.utdallas.edu/reu.

VIII. REFERENCE

[1] “Fault Tree." Fault Tree Diagram - What
is a Fault Tree and Fault Tree Analysis?
N.p., n.d. Web. 21 July 2017.
[2] Ariss, Omar El, Dianxiang Xu, and W.
Eric Wong. "Integrating Safety Analysis
With Functional Modeling." IEEE
Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans
41.4 (2011): 610-24. Web.
[3] Publishing, ReliaSoft. "Fault Tree
Analysis." Weibull.com -- Free Data
Analysis and Modeling Resources for
Reliability Engineering. N.p., n.d. Web. 21
July 2017
[4] Fault Tree Block Types. N.p., n.d. Web.
27 July 2017.

	

