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Abstract

-- Collisions particle colliders are a source of particle discoveries. However, 
determining these particles requires solving difficult signal-versus-background 
classification problems

-- Other approaches have relied on machine learning models, which are limited in 
learning complex functions

-- Recent advances (computation and data size) neural networks provide an 
opportunity to learn complex functions and better discriminate between signal 
and background classes

-- We study the design considerations for a neural network model and provide a 
comparative analysis with logistic regression



Machine Learning Problems



The Machine Learning Framework

y = f(x)

-- Training: given a training set of labeled examples {(x1,y1), …, (xN,yN)}, estimate the
prediction function f by minimizing the prediction error on the training set

-- Testing: apply f to a never before seen test example x and output the predicted value y =
f(x)
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Generalization

How well does a learned model generalize from the data it was trained on to a new 
test set?

Training set (labels known) Test set (labels unknown)



Our Data…

Classification problem to distinguish between a 

signal process to background for high energy 

physics
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Neural Networks

-- Neural networks are loosely 
based on the human brain 

-- Utilized for classification 
purposes

-- Popularity of neural networks 
have increased
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Backpropagation

-- Common Method used to train 
Neural Network

-- Supervised Learning Technique

-- Reduces error respective to 
weights

-- Activation function is utilized



Neural Networks
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Backpropagation
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Neural Network Design Considerations 

-- What transfer function should be used? 

-- How many inputs does the network need? 

-- How many hidden neurons per hidden layer? 

-- How many outputs should the network have? 

There is no standard methodology to determinate these values. Even there is some heuristic points, final values are

determinate by a trial and error procedure



Logistic Regression 

Assumes the following form for P(Y|X):

Logistic function applied to a linear function of the

data

Logistic  function

(or Sigmoid):
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Features can be discrete or continuous!
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Experiment : Our Neural Network Information

--1000 training examples

-- 100 test examples

-- 8 features

-- 3 Layer Neural Network 

-- 10,000 training iterations 

-- Hidden Nodes: Range from 1 – 100

-- Step size : .01



Results: Neural Networks
Neural Network 

Best Accuracy: 78%

# of hidden nodes: 65

Worst Accuracy: 51%

# of hidden nodes: 1



Results: Best hidden node NN vs Logistic Regression 

Neural Network Logistic Regression 



Conclusion

-- Neural Network with 65 hidden nodes provided better performance 
than our  Logistic Regression model on all test cases 

-- We conclude it is better to use a the Backpropagation algorithm to 
classify the High Energy Physics Data 



Future Work 

-- Increase the number of hidden layers, to determine if accuracy 
percentage will increase 

-- Compare against different machine learning algorithms against this 
same data, and determine which are more effective for classification.
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