

National Organization for the Professional Advancement of Black Chemists and Chemical Engineers

Recent Applications of Orthogonality Constrained Density Functional Theory: Core Excitations

Wallace Derricotte, Prakash Verma, Francesco Evangelista

NOBCChE Presentation

Evangelista Lab

09/24/15

Core-Excited States

Core-Excited States

Core-Excited States

- Theoretical Challenges Include:
 - Orbital relaxation
 - Require treatment of scalar (1s excitations) and spin-dependent relativistic effects
 - Electron correlation

Wavefunction/Green's

Function Methods

- SOS-CIS(D)¹
- RASSCF²
- LR-CC methods³ \bullet
- Algebraic Diagrammatic Construction (ADC)⁴

TDDFT

- Linear Response TDDFT⁵
- Real-Time TDDFT⁶
- ROKS/CIS⁷ •

- Static Exchange Approx. (IVO-HF)⁸
- Maximum Overlap Δ SCF⁹

- 1) Asmuruf, F.A.; Besley, N.A., Chem. Phys. Lett. 2008
- 2) Ågren, H.; Jensen, H.J.A.; Chem. Phys. 1993
- 3) Coriani, S.; Christiansen, O.; Fransson, T.; Norman, P., 7) Roemelt, M.; Maganas, D.; DeBeer S.; Neese F., J. Phys. Rev. A. 2012
- 4) Wenzel, J.; Wormit, M.; Dreuw, A., J. Comp. Chem., 2014
- 5) Stener, M.; Fronzoni, G.; de Simone, M. Chem. Phys. Lett. 2003

- 6) Lopata, K.; Van Kuiken, B. E.; Khalil, M.; Govind, N. JCTC 2012
- Chem. Phys. 2013
- 8) Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G. Chem. Phys. Lett. 1994
- 9) Besley, N.A.; Gilbert, A.T.B.; Gill, P.M.W., J.Chem.Phys. 2009

Wavefunction/Green's

Function Methods

- SOS-CIS(D)¹
- RASSCF²
- LR-CC methods³ ullet
- Algebraic Diagrammatic Construction (ADC)⁴

Accurate but Expensive

- 1) Asmuruf, F.A.; Besley, N.A., Chem. Phys. Lett. 2008
- 2) Ågren, H.; Jensen, H.J.A.; Chem. Phys. 1993
- 3) Coriani, S.; Christiansen, O.; Fransson, T.; Norman, P., 7) Roemelt, M.; Maganas, D.; DeBeer S.; Neese F., J. *Phys. Rev. A.* **2012**
- 4) Wenzel, J.; Wormit, M.; Dreuw, A., J. Comp. Chem., 2014
- 5) Stener, M.; Fronzoni, G.; de Simone, M. Chem. Phys. Lett. 2003

TDDFT

- Linear Response TDDFT⁵
- Real-Time TDDFT⁶
- ROKS/CIS⁷ •

- Static Exchange Approx. (IVO-HF)⁸
- Maximum Overlap Δ SCF⁹

- 6) Lopata, K.; Van Kuiken, B. E.; Khalil, M.; Govind, N. JCTC 2012
- Chem. Phys. 2013
- 8) Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G. Chem. Phys. Lett. 1994
- 9) Besley, N.A.; Gilbert, A.T.B.; Gill, P.M.W., J.Chem.Phys. 2009

Wavefunction/Green's

Function Methods

- SOS-CIS(D)¹
- RASSCF²
- LR-CC methods³
- Algebraic Diagrammatic Construction (ADC)⁴

More Economical but have limitations.

- 1) Asmuruf, F.A.; Besley, N.A., Chem. Phys. Lett. 2008
- 2) Ågren, H.; Jensen, H.J.A.; Chem. Phys. 1993
- 3) Coriani, S.; Christiansen, O.; Fransson, T.; Norman, P., 7) Roemelt, M.; Maganas, D.; DeBeer S.; Neese F., J. *Phys. Rev. A.* **2012**
- 4) Wenzel, J.; Wormit, M.; Dreuw, A., J. Comp. Chem., 2014
- 5) Stener, M.; Fronzoni, G.; de Simone, M. Chem. Phys. Lett. 2003

TDDFT

- Linear Response TDDFT⁵
- Real-Time TDDFT⁶
- ROKS/CIS⁷ ۲

- Static Exchange Approx. (IVO-HF)⁸
- Maximum Overlap ΔSCF⁹

- 6) Lopata, K.; Van Kuiken, B. E.; Khalil, M.; Govind, N. JCTC 2012
- Chem. Phys. 2013
- 8) Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G. Chem. Phys. Lett. 1994
- 9) Besley, N.A.; Gilbert, A.T.B.; Gill, P.M.W., J.Chem.Phys. 2009

Wavefunction/Green's

Function Methods

- SOS-CIS(D)¹
- RASSCF²
- LR-CC methods³
- Algebraic Diagrammatic Construction (ADC)⁴

Computationally Cheap, but inaccurate, requires energy shifts or SIC

Functionals

- 1) Asmuruf, F.A.; Besley, N.A., Chem. Phys. Lett. 2008
- 2) Ågren, H.; Jensen, H.J.A.; Chem. Phys. 1993
- 3) Coriani, S.; Christiansen, O.; Fransson, T.; Norman, P., 7) Roemelt, M.; Maganas, D.; DeBeer S.; Neese F., J. *Phys. Rev. A.* **2012**
- 4) Wenzel, J.; Wormit, M.; Dreuw, A., J. Comp. Chem., 2014
- 5) Stener, M.; Fronzoni, G.; de Simone, M. Chem. Phys. Lett. 2003

- Linear Response TDDFT⁵
- **Real-Time TDDFT⁶**
- ROKS/CIS⁷ •

- Static Exchange Approx. (IVO-HF)⁸
- Maximum Overlap Δ SCF⁹

- 6) Lopata, K.; Van Kuiken, B. E.; Khalil, M.; Govind, N. JCTC 2012
- Chem. Phys. 2013
- 8) Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G. Chem. Phys. Lett. 1994
- 9) Besley, N.A.; Gilbert, A.T.B.; Gill, P.M.W., J.Chem.Phys. 2009

Compensating for Failure of TDDFT

- Standard functionals fail dramatically for core excitations, which results in a large underestimation of the excitation energy.
 - Poor performance stems the low quality of the KS eigenvalues, use of frequency independent XC functionals.
- It is common for TDDFT spectra to be shifted by a uniform amount in order to compensate for the underestimation.

Method	Avg. Energy Shift (eV)
BP86	171.1
B3LYP	143.3
BP86	171.0
BP86/DKH2	105.6

- Variational time-independent formulation of DFT
 - Builds upon variational DFT approaches¹⁻⁷ but imposes an orthogonality condition on the Kohn-Sham system:

$$\langle \Phi^{(m)} | \Phi^{(n)}
angle = \delta_{mn}$$

- 1) Ziegler, T.; Rauk, A.; Baerends, E. J. *Theor. Chim. Acta*, **1977**
- 2) Kowalczyk, T.; Yost, S. R.; Van Voorhis, T. J. Chem. Phys. **2011**
- 3) Ziegler, T.; Seth, M.; Krykunov, M.; Autschbach, J.; Wang, F., J. Chem. Phys. 2009
- 4) Baruah, T.; Pederson, M. R. JCTC 2009

- 5) Theophilou, A. K. J. Phys. C 1979
- 6) Görling, A. Phys. Rev. A 1999
- 7) Levy, M.; Nagy, Á. Phys. Rev. Lett. 1999
- 8) Evangelista, F. A.; Shushkov, P.; Tully, J. C. J. *Phys. Chem. A* **2013**

- Variational time-independent formulation of DFT
 - Builds upon variational DFT approaches¹⁻⁷ but imposes an orthogonality condition on the Kohn-Sham system:

$$\langle \Phi^{(m)} | \Phi^{(n)}
angle = \delta_{mn}$$
 \leftarrow Avoids Variational Collapse

- 1) Ziegler, T.; Rauk, A.; Baerends, E. J. *Theor. Chim. Acta*, **1977**
- 2) Kowalczyk, T.; Yost, S. R.; Van Voorhis, T. J. Chem. Phys. **2011**
- 3) Ziegler, T.; Seth, M.; Krykunov, M.; Autschbach, J.; Wang, F., J. Chem. Phys. 2009
- 4) Baruah, T.; Pederson, M. R. JCTC 2009

- 5) Theophilou, A. K. J. Phys. C 1979
- 6) Görling, A. Phys. Rev. A 1999
- 7) Levy, M.; Nagy, Á. Phys. Rev. Lett. 1999
- 8) Evangelista, F. A.; Shushkov, P.; Tully, J. C. J. *Phys. Chem. A* **2013**

- Variational time-independent formulation of DFT
 - Builds upon variational DFT approaches¹⁻⁷ but imposes an orthogonality condition on the Kohn-Sham system:

$$\langle \Phi^{(m)} | \Phi^{(n)}
angle = \delta_{mn}$$
 - Avoids Variational Collapse

 OCDFT also introduces a quasi-adiabatic approximation in which the XC functional for each excited state is approximated as the ground state XC functional.

$$E_{\rm OCDFT}^{(n)}[\rho^{(n)}] = \sum_{\mu\nu} D_{\mu\nu}^n (T_{\mu\nu} + V_{\mu\nu}) + E_{\rm coul}[\rho^{(n)}] + E_{\rm xc}^{(0)}[\rho^{(n)}].$$

- 1) Ziegler, T.; Rauk, A.; Baerends, E. J. *Theor. Chim. Acta*, **1977**
- 2) Kowalczyk, T.; Yost, S. R.; Van Voorhis, T. J. Chem. Phys. **2011**
- 3) Ziegler, T.; Seth, M.; Krykunov, M.; Autschbach, J.; Wang, F., J. Chem. Phys. 2009
- 4) Baruah, T.; Pederson, M. R. JCTC 2009

- 5) Theophilou, A. K. J. Phys. C 1979
- 6) Görling, A. Phys. Rev. A 1999
- 7) Levy, M.; Nagy, Á. Phys. Rev. Lett. 1999
- 8) Evangelista, F. A.; Shushkov, P.; Tully, J. C. J. Phys. Chem. A **2013**

- Variational time-independent formulation of DFT
 - Builds upon variational DFT approaches¹⁻⁷ but imposes an orthogonality condition on the Kohn-Sham system:

$$\langle \Phi^{(m)} | \Phi^{(n)}
angle = \delta_{mn}$$
 \leftarrow Avoids Variational Collapse

Adiabatic Approx.

 OCDFT also introduces a quasi-adiabatic approximation in which the XC functional for each excited state is approximated as the ground state XC functional.

$$E_{\text{OCDFT}}^{(n)}[\rho^{(n)}] = \sum_{\mu\nu} D_{\mu\nu}^{n}(T_{\mu\nu} + V_{\mu\nu}) + E_{\text{coul}}[\rho^{(n)}] + E_{\text{xc}}^{(0)}[\rho^{(n)}].$$

- 1) Ziegler, T.; Rauk, A.; Baerends, E. J. *Theor. Chim. Acta*, **1977**
- 2) Kowalczyk, T.; Yost, S. R.; Van Voorhis, T. J. Chem. Phys. **2011**
- 3) Ziegler, T.; Seth, M.; Krykunov, M.; Autschbach, J.; Wang, F., J. Chem. Phys. 2009
- 4) Baruah, T.; Pederson, M. R. JCTC 2009

- 5) Theophilou, A. K. J. Phys. C 1979
- 6) Görling, A. *Phys. Rev. A* **1999**
- 7) Levy, M.; Nagy, Á. Phys. Rev. Lett. **1999**
- 8) Evangelista, F. A.; Shushkov, P.; Tully, J. C. J. *Phys. Chem. A* **2013**

- Must introduce two new features to OCDFT to calculate NEXAS spectra
 - Previous implementation selected the *highest lying* hole orbitals (highest hole eigenvalue) however for core excitations we want to select the *lowest lying* hole orbitals (lowest hole eigenvalue).
 - Algorithm must be generalized to multiple excited states.

- Must introduce two new features to OCDFT to calculate NEXAS spectra
 - Previous implementation selected the *highest lying* hole orbitals (highest hole eigenvalue) however for core excitations we want to select the *lowest lying* hole orbitals (lowest hole eigenvalue).
 - Algorithm must be generalized to multiple excited states.

- Must introduce two new features to OCDFT to calculate NEXAS spectra
 - Previous implementation selected the *highest lying* hole orbitals (highest hole eigenvalue) however for core excitations we want to select the *lowest lying* hole orbitals (lowest hole eigenvalue).
 - Algorithm must be generalized to multiple excited states.

- Must introduce two new features to OCDFT to calculate NEXAS spectra
 - Previous implementation selected the *highest lying* hole orbitals (highest hole eigenvalue) however for core excitations we want to select the *lowest lying* hole orbitals (lowest hole eigenvalue).
 - Algorithm must be generalized to multiple excited states.

- Must introduce two new features to OCDFT to calculate NEXAS spectra
 - Previous implementation selected the *highest lying* hole orbitals (highest hole eigenvalue) however for core excitations we want to select the *lowest lying* hole orbitals (lowest hole eigenvalue).
 - Algorithm must be generalized to multiple excited states.

Sensitivity to Orbital Overlap

 Comparing the sensitivity of OCDFT and TDDFT using Tozer Overlap Metric.¹

$$\Lambda_{\mathrm{hp}} = \int | arphi_h^{(n)}(r) | | arphi_p^{(n)}(r) | dr$$

Sensitivity to Orbital Overlap

 Comparing the sensitivity of OCDFT and TDDFT using Tozer Overlap Metric.¹

1) Peach, M. J. G.; Benfield, P.; Helgaker, T.; Tozer, D. J., J. Chem. Phys. 2008

Application to Thymine

 π_2^*

 π_3^*

 $\phi_{\pi_1^*}$

Spectral Simulation Details

- Compute 10 excitations per hole for each carbon, nitrogen, and oxygen 1s orbital in thymine.
- Plot spectra using gaussians with FWHM of 0.1 eV 0.4 eV in order to simulate natural spectroscopic broadening effects.
- Compare the OCDFT results with experiment and previously applied 2nd order algebraic diagrammatic construction [ADC(2)] methods
- Transition dipole moments are approximated using Kohn-Sham determinants and the position vector

$$\mu_{fi} = \langle \Phi^{(f)} | \hat{r} | \Phi^{(i)} \rangle$$

 Using the approximate transition dipole moment we can now calculate an oscillator strength for each transition

$$f_{
m osc} = rac{2}{3} |\mu_{fi}|^2 \omega_{fi}$$

- Plekan, O.; Feyer, V.; Richter, R.; Coreno, M.; de Simone, M.; et al. *Chem. Phys.* 2008
- 2) Wenzel, J.; Wormit, M.; Dreuw, A. J. Comput. Chem. **2014**
- 3) Derricotte, W. D.; Evangelista, F. A. *Phys. Chem. Chem. Phys.* **2015**

- Plekan, O.; Feyer, V.; Richter, R.; Coreno, M.; de Simone, M.; et al. *Chem. Phys.* 2008
- 2) Wenzel, J.; Wormit, M.; Dreuw, A. J. Comput. Chem. **2014**
- 3) Derricotte, W. D.; Evangelista, F. A. *Phys. Chem. Chem. Phys.* **2015**

Application to Transition Metal Complexes

Ti K-Edge of Tetra coordinated Titanium Complexes

- Class of molecules used to study covalency in cyclopentadienyl (Cp) complexes relevant for use as anti-cancer drug.
- Full treatment of scalar relativistic effects will be handled by X2C Hamiltonian implemented as plugin in PSI4
- 1) DeBeer George, S.; Brant, P.; Solomon, E. I. J. Am. Chem. Soc. 2005
- 2) Casarin, M.; Finetti, P.; Vittadini, A.; Wang, F.; Ziegler, T. J. Phys. Chem. A 2007.

4960

4965

4970

4975

4980

Energy (eV)

4985

4990

4995

- Class of molecules used to study covalency in cyclopentadienyl (Cp) complexes relevant for use as anti-cancer drug.
- Full treatment of scalar relativistic effects will be handled by X2C Hamiltonian implemented as plugin in PSI4
- 1) DeBeer George, S.; Brant, P.; Solomon, E. I. J. Am. Chem. Soc. 2005
- 2) Casarin, M.; Finetti, P.; Vittadini, A.; Wang, F.; Ziegler, T. J. Phys. Chem. A 2007.

Ti K-Edge of Tetra coordinated Titanium Complexes $TiCl_4$ $TiCpCl_3$ $TiCp_2Cl_2$ $TiCp_2Cl_2$

- Class of molecules used to study covalency in cyclopentadienyl (Cp) complexes relevant for use as anti-cancer drug.
- Full treatment of scalar relativistic effects will be handled by X2C Hamiltonian implemented as plugin in PSI4
- 1) DeBeer George, S.; Brant, P.; Solomon, E. I. J. Am. Chem. Soc. 2005
- 2) Casarin, M.; Finetti, P.; Vittadini, A.; Wang, F.; Ziegler, T. J. Phys. Chem. A 2007.

Comparison With Experimental Spectra

 Why are the peaks split for the Cp compounds? Maybe OCDFT Particle Orbitals can shed some insight?

1) DeBeer George, S.; Brant, P.; Solomon, E. I. J. Am. Chem. Soc. 2005

Comparison With Experimental Spectra

 Why are the peaks split for the Cp compounds? Maybe OCDFT Particle Orbitals can shed some insight?

1) DeBeer George, S.; Brant, P.; Solomon, E. I. J. Am. Chem. Soc. 2005

Pre-Edge Analysis

Transition Energy (eV)	Rel. Osc. Strength		
TiCl ₄			
4963.85	0.0805		
4963.53	0.0181		
4964.38	0.1983		
4964.03	0.1120		
	Transition Energy (eV) TiCl ₄ 4963.85 4963.53 4964.38 4964.03		

Pre-Edge Analysis

Transition Energy (eV)	Rel. Osc. Strength		
TiCpCl ₃			
4963.31	0.0226		
4963.38	0.0227		
4963.45	0.0190		
4964.80	0.0271		
4964.88	0.0270		
	Transition Energy (eV) TiCpCl ₃ 4963.31 4963.38 4963.45 4964.80 4964.88		

Particle Orbitals

Pre-Edge

2

Pre-Edge Analysis

State	Transition Energy (eV)	Rel. Osc. Strength	
TiCp ₂ Cl ₂			
1	4963.04	0.0114	
2	4964.20	0.0079	
3	4964.18	0.0012	
4	4964.32	0.0003	
5	4964.22	0.0116	

Particle Orbitals

Pre-Edge

Conclusions

- Extended OCDFT to calculate multiple excited states in order to fully simulate NEXAS spectra.
- OCDFT has no significant dependence on the amount of Hartree-Fock exchange present in the functional
- Looked at excitations from first and second row elements and show that OCDFT is less sensitive to changes in orbital overlap.
- Calculated the NEXAS spectra of thymine in order to show that OCDFT is a useful tool for interpreting NEXAS spectra.
- Coupled OCDFT with X2C relativistic Hamiltonian in order to show that OCDFT can be effective at simulating NEXAS spectra of transition metal complexes.

Thank You

National Institutes of Health

Kevin Hannon Jeff Schriber Tianyuan Zhang

Prakash Verma

Chenyang Li

— Minions

Post-Docs

NSF GRADUATE RESEARCH FELLOWSHIP PROGRAM

EMORY