The Role of Chemical Co-Solvents on G-Quadruplex structures in the c-MYC and VEGF proto-oncogene promoters

Quinea Lassiter
The University of Arizona
NOBCChE
New Orleans, LA
September 25, 2014
Overview

Introduction to Cancer
New Targeting Strategy
Proto-oncogenes c-MYC and VEGF
Results
Future Work
Cancer in the United States

- 2nd leading cause of death
- 1 in 4 people will develop cancer in their lifetime
Targeting Cancers Achilles Heel

- G-quadruplex
- i-Motif
DNA Secondary Structures and Base Pairing Interactions

Watson & Crick Base Pairing

G-quadruplex

i-Motif
Hallmarks of Cancer
c-MYC in Cancer

- Over expressed in more than 70% of all cancers
- Extremely difficult to drug

Diagram:
- c-MYC
 - Self-sufficiency in growth signals
 - Evading apoptosis
 - Deregulated Metabolism
 - Insensitivity to anti-growth signals
VEGF in Cancer

- Vascular Endothelial Growth Factor
- Regular function is formation of new blood vessels
 - Provides oxygen and nutrients to cells
- Tumor cells can “turn on”
 - Angiogenesis
- DNA footprinting data shows formation of G-quadruplex could have potential transcriptional regulation
Intracellular stresses mimicked by Molecular Crowding Agents

<table>
<thead>
<tr>
<th>Crowding Agents</th>
<th>Dehydrating Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficoll70</td>
<td>Glucose</td>
</tr>
<tr>
<td>Dextran Sulfate</td>
<td>Glycerol</td>
</tr>
<tr>
<td>PEG-300</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>Sucrose</td>
<td></td>
</tr>
</tbody>
</table>
Results
c-MYC: Crowding Agents

50mM Tris-HCl 10mM KCl
c-MYC: Dehydrating Agents

MYC Glycerol

- Control
- 10%
- 20%
- 30%
- 40%

MYC Glucose

- Control
- 10%
- 20%
- 30%
- 40%

MYC Acetonitrile

- Control
- 10%
- 20%
- 30%
- 40%

50mM Tris-HCl 10mM KCl

VEGF: Crowding Agents

VEGF PEG 300
- Control
- 10%
- 20%
- 30%
- 40%

VEGF Dextran
- Control
- 10%
- 20%
- 30%
- 40%

VEGF Sucrose
- Control
- 10%
- 20%
- 30%
- 40%

VEGF Ficoll70
- Control
- 10%
- 20%
- 30%
- 40%

50mM Tris-HCl 10mM KCl
VEGF: Dehydrating Agents

VEGF Glycerol

VEGF Acetonitrile

VEGF Glucose

50mM Tris-HCl 10mM KCl
Saturation Points

MYC Sucrose Saturation Determination

- Wavelength (nm)
- Molar Ellipticity
- Control
- 10%
- 20%
- 30%
- 40%

- at 262nm
- at 240nm
Future Work: Drug Discovery

- Thermal Melt at saturation points with each co-solvent
- Begin screening c-MYC and VEGF G-quadruplexes with varies compounds in nuclear conditions
 - FRET melts
 - Cytotoxicity Assays
Acknowledgments

NOBCChE, The Science Gateway Institute, Dr. Tracy A. Brooks and lab, Dr. Randy M. Wadkins, Dr. Laurence Hurley and lab, Tim O’Neill, The University of Mississippi, The University of Arizona
Questions?

Quinea Lassiter
quineal@email.arizona.edu
References

