Examining the Aggregation Behavior of Polymer Grafted Nanoparticles using Molecular Simulation and Theory

Jessica D. Haley, Christopher R. Iacovella, Clare McCabe, and Peter T. Cummings

> Department of Chemical and Biomolecular Engineering Vanderbilt University

> > September 25, 2014

Motivation

Significant scientific and technological interest has focused on polymer inorganic nanocomposites (PINCs) over the past few decades

- The mixing of polymers and nanoparticles is opening pathways for engineering flexible composites that exhibit advantageous magnetic, electrical, optical, or mechanical properties.
 - Grafted buckyball systems provide up to a 3 order of magnitude increase in fracture toughness
 - Ionic liquid grafted zirconia nanoparticles have been shown to provide excellent mechanical, electrochemical, and thermal stability for use in Li-ion batteries

http://www.q-eaep.kyushuu.ac.jp/project/en/env_g006.html

Motivation

- The greatest hindrance to the large-scale production and commercialization of PINCs or tethered nanoparticles(TNPs) is the absence of cost-effective methods for controlling the dispersion of the nanoparticles
 - The nanoscale particles typically aggregate, which cancels out any benefits associated with the PINCs
 - Obtaining well-dispersed nanoparticles composites with high homogeneity presents a challenge.

σ = 0.01 chains nm-2 Mg = 158 kg mol⁻¹

< 回 > < 三 > < 三 >

 $\sigma = 0.1$ chains nm⁻² $M_g = 24$ kg mol⁻¹

Polystyrene coated silica nanoparticles Akcora, et al. Nature Materials, 8 (2009)

Goal

- We want a systematic way to explore the aggregation/dispersion trends as a function of: tether length, tether density, and temperature/interaction strength
 - The goal is to avoid costly large scans of parameter space
- A convenient way of capturing the aggregation/dispersion in a systematic way is to look at the VLE
 - We can consider the VLE to be more of a general measure of phase behavior
 - The vapor phase is viewed as a dispersed phase in an implicit solvent and the liquid phase can be compared to a higher density aggregated phase
- Molecular simulations and SAFT calculations are used to examine this behavior, coupling the detailed structural understanding gleaned from simulation with the efficiency of SAFT for thermodynamic properties.

< 回 > < 三 > < 三 >

Simulation Model

We want a model that balances the following:

- Directly relatable to experiment (e.g., realistic relative interaction strengths)
- · Generic enough to be applicable to a wide range of systems
- Computationally efficient
- Lends itself easily to SAFT calculations

Coarse-grained (CG)/united atom (UA) model was chosen

- Silica nanoparticle treated as a single CG site
- Grafted polymers modeled as UA alkanes

Simulation Model

- Silica nanoparticles (1 nm) are modeled with a 12-6 Lennard-Jones potential
 - Parameters come from Lee and Hua derived for Si_6O_{12}: $\sigma{=}6.2$ Å and $\epsilon{=}$ 3.1 kcal/mol
- Polymers are modeled as UA chains with TraPPE potential
 - Following Martin and Siepmann: CH_2 : σ =3.95Å, ϵ =0.191 kcal/mol CH_3 : σ = 3.75Å, ϵ =0.0914 kcal/mol ...+ bonds + angles + dihedrals
 - free to move around the surface of the nanoparticle
- Lorentz-Berthelot mixing rules applied

Lee and Hua J. Chem. Phys. 132 (2010) Martin and Siepmann, J. Phys. Chem B, 102, (1998)

Simulation Method

- Simulations performed using the GPU-enabled HOOMD-Blue
 Quench dynamics (QD) is used to estimate the VLE
 - - Start with a single phase liquid system
 - 2 Rapidly expand the box in one direction
 - Solution Calculate the density profile along the long dimension of the box
 - Repeat for different temperatures

Anderson, et al. J. Comput. Phys. 227, (2008); in't Veld, et al. J. Chem. Phys. 129, (2008)

.

< 177 ▶

SAFT Theory

Background

• Molecular based equation of state

$$\frac{A}{NkT} = \frac{A^{ideal}}{NkT} + \frac{A^{mono}}{NkT} + \frac{A^{chain}}{NkT} + \frac{A^{assoc}}{NkT}$$

- Molecules modeled as hard spheres
- Spheres interact through dispersion interactions
- The spheres tangentially bond together
- Molecules can interact through association interactions
 - Mimics hydrogen bonds
- Several different versions of the SAFT equation have been proposed

Chapman, Gubbins, Jackson, Radosz, Fl. Ph. Eq., 52, 31 (1989); Ind. Eng. Chem. Res., 29, 1709 (1990)

Hetero-SAFT VR

Background

 Describes chains composed of segments of different size and/or energy of interaction

$$rac{A}{NkT} = rac{A^{ideal}}{NkT} + rac{A^{mono}}{NkT} + rac{A^{chain}}{NkT} + rac{A^{assoc}}{NkT}$$

• Modification of the chain term

$$\frac{A^{chain}}{NkT} = -m \ln y_i^{SW}(\sigma_i) \Rightarrow -\sum_{ijbonds} \ln y_i^{SW}(\sigma_{ij})$$

 Hetero-SAFT-VR validated through extensive NPT and GEMC simulations of diblock heteronuclear chains

Peng, Zhao, and McCabe, Mol. Phys., 104, 571, (2006)

Hetero-SAFT VR

- Dispersion interactions modeled through a potential of variable range
 - 3 adjustable parameters: σ,ϵ , and λ
- Nanoparticles:
 - Fit to reproduce high quality Lennard-Jones VLE from NIST
- Alkanes:
 - UA Atom: m = (C-1)/3+1
 - Parameters taken from McCabe and Jackson (PCCP, 1999)
- Mixtures
 - Lorentz-Berthelot combining rules

September 25, 2014

Connecting VLE to Aggregation/Dispersion Behavior

- T* can be thought of as inverse interaction strength
 - Low T* means strongly interacting, high T* more weakly interacting
 - Strongly interacting systems:
 - Volume fraction greater than 0.20 results in single uniform liquid,
 - Volume fraction less than 0.20 system will form aggregates in equilibrium with very low density dispersed phase
 - Weakly interacting systems:
 - transition to uniform phase will occur at lower volume fraction

Grafted vs. Bare NPs

- Single graft system compared to the pure NP VLE
 - Behavior is significantly altered as compared to the pure NP system
 - Polymers disrupt strong NP-NP interactions

Jessica D. Haley, Christopher R. Iacovella, ClaExamining the Aggregation Behavior of Polyn

Monotethered Nanoparticle Systems

• Consider a system with a single polymer

- critical temperature drops as chain length increases
 - inverse of what is seen for a pure polymer system
- critical density drops as chain length increases
 - consistent with pure polymer systems

Change in Topology

- Changing the number of grafts has a similar effect to changing the interaction strength
 - Potential of mean force (PMF) between grafted nanoparticles
 - volume fraction = 0.003 and $T^* = 40$
 - Increasing the number of grafts shields the strong nanoparticle-nanoparticle interactions
 - effective interaction for $N_{graft} = 6$ is essentially a repulsive shoulder

Jessica D. Haley, Christopher R. Iacovella, ClaExamining the Aggregation Behavior of Polyn September 25, 2014

Varying Number of Grafts/Beads

- Reduction in critical temperature as the number of grafts is increased is seen with longer grafts having a lower critical temperature than shorter grafts
- Transition point is reached at 6 grafts where this trend is reversed and shorter grafts result in a lower critical temperature.

Conclusions

- Agreement between VLE calculations performed using quench dynamics (QD) and SAFT for tethered nanoparticles
 - VLE provides us with a convenient way to examine the changes in aggregation/dispersion behavior
- Tether length increases, the coexistence region shrinks
 - Both critical density and temperature are reduced, the latter of which is the opposite of what is seen for pure alkanes
 - SAFT calculations reveal transition point at 6 grafts where this trend is reversed and shorter grafts result in a lower critical temperature.
- As tether density increases, strong interactions between nanoparticles are shielded
 - PMF shows reduced interaction, matching behavior seen when reducing NP interaction
 - VLE behavior converges at higher grafting density
- We can investigate how to further modify behavior through solvent to develop design rules for controlling this fundamental behavior

Acknowledgements

Advisors:

• Clare McCabe, Peter Cummings, and Christopher lacovella

Funding:

• National Science Foundation

- GAANN Fellowship
 - Department of Education for a Graduate Assistance in Areas of National Need (GAANN)
 - Fellowship under grant number P200A090323