Creating a Program in Mat Lab to Classify CRISM Data

Joyce Bevins, Justin Deloatch, MyAsia Reid Mentor Dr. Eric Akers Elizabeth City State University 1704 Weeksville Rd Elizabeth City, NC, 27909

Abstract

The 2009-2010 undergrad Research team primary focus was to create a program using MAT LAB that will classify CRISM data in a shorter time frame than what it will take to classify by hand. The CRISM research consisted of manually classifying images from Mars and placing them into a Microsoft EXCEL data base, downloading images and storing them into Kitoto's server so that the program can read and return results of the overall images and mineral images. These images can be classified as excellent, fair, poor, and absent. The classification of each image will show whether there is a lot, little, or no water in each kind of mineral. The five minerals are oxidized iron, mafic minerals, hydroxylated silicates, bound water and frozen H_2O . The images that show the most signs of water in certain areas on Martian will be examined more closely. Currently, the CRISM team working is on creating this program in Mat Lab.

1. Introduction

For years many people have had questions concerning Mars atmosphere climate, and surface. Chief among these is the question of whether water has ever existed on Mars and if so where and when did it exist and if still present, in what form does it currently reside? Is Mars suitable for life? Can there be human exploration and colonization on Mars? NASA is using the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument orbiting on board the Mars Reconnaissance Orbiter, to trace the past and present water on Martian Mars and answer these questions. The CRISM instrument takes images of the Martian surface in a variety of selected wavelengths in order to search for water or water bearing minerals.

CRISM is "one of NASA's high-tech Detectives seeking traces of past and present water on the Martian surface." CRISM is an expression of NASA's Mars exploration strategy that can be summarized in the phrase: "follow the water." The CRISM instrument is a Visibleinfrared imaging spectrometer. It can cover wavelengths from 0.362 to 3.92 microns at 6.55 nanometer/channel. Combining images in a variety of different visible and near infrared wavelength bands provides a method of visualizing the areographic mineral signature of five specific forms of water, including oxides of iron, mafic minerals, hydroxylated silicates, minerals containing bound or adsorbed water and regolith comprised of some fraction of water ice. NASA researchers sent the CRISM Instrument to Mars to record data on specific locations that indicate a potential for water or mineral indications of current of past water.

CRISM consists of three component boxes which are the OSU (the optical Sensor Unit Sensor), the GME (Gimbals Motor Electronics and the DPU (Data Processing Unit. Each of these boxes has their own duties to perform. The GME contains the optics, gimbal, focal planes, cryocoolers, Radiators, and focal plane electronics.

2. CRISM data and Spread Sheet

Hyperlinks to web resident CRISM image data products were placed into an EXCEL spreadsheet. The spreadsheet contains an identifying number for each locale's set of data products and spaces for data quality and content ellucidation. When accessed, each data product granule contained five mineral identifying image combinations. The CRISM undergraduate reseach Team was given the spread sheet to analyze and classify each image manually before being able to create a program in Mat Lap that would do it autally.

3. Classifying Images

The ECSU CRISM team decided to have four categories for classifying images, which were excellent, fair, poor, and absent. Each overall data granule was classified so that NASA-JHU/APL researchers would know the quality of the images taken by the CRISM instrument. The mineral signature signal-strength apparent in each of the five mineral-specific images was also described as:

- absent,
- weak,
- moderate
- strong.

Columns of Spreadsheet cells allowed the data quality of an image to be recorded with a separate column for recording a description of the presence or absence of one of the five classes of water bearing minerals as depicted in the figures 1 a and b and figures 2 a-e.

Figure 1b. An example of an MRO-CRISM infrared image (Target ID: 31973 and Target ID (hex) 7ce5).

Figure 1a. An example of an MRO-CRISM visible image (Target ID: 31973 and Target ID (hex) 7ce5).

Figure 2a. An example of the Iron Oxide data product described as having a *strong* signal for iron oxide (Target ID: 31973 and Target ID (hex) 7ce5).

Figure 2b. An example of the Iron Oxide data product described as *absent* in mafic minerals (Target ID: 31973 and Target ID (hex) 7ce5).

Figure 2c. An example of the phylosilicate (hydroxylated silcate) data product described as *absent* in phylosilicates (Target ID: 31973 and Target ID (hex) 7ce5).

Figure 2d. An example of the bound water or hydrated mineral data product described as having a *strong* signal for hydrated minerals (Target ID: 31973 and Target ID (hex) 7ce5).

Figure 2e. An example of the ice data product described as having a *strong* signal for the presence f ice in image (Target ID: 31973 and Target ID (hex) 7ce5).

All five products were unlikely to have positive signals based on mutually exclusive mineralogical considerations. "Water and H₂O Ice" were noticed to be typically absent in data recorded at latitudes away from the polar regions. Signal strength for iron oxide, mafic mineralogy, bound water and hydroxylated silicates varied across the planet.

4. Downloading Images

Selecting the hyperlink loaded a CRISM webpage containing a visible and infrared image of a particular area bounded by the instrument field of view. Five image data products were also displayed for analysis.

To make data granules available for automatic processing, all images were downloaded, and saved to a destination directory where the data products could be accessed.

5. Moving Images into Kitoto

Kitoto is a server with 76.3 gigs of space in which to store our image data and data products.

000		jdeloatch@kitoto:/crism — ssh — 112×41					
	ssh						
[jdeloatch@kito	to ~]\$ cd						Ĩ.
[jdeloatch@kito	to home]\$ ls						
condor eakers	jbevins jburne	y jdeloatch jj	ordon jpowell	jyuan maustin	nreid revans		
[]deloatchekito	to nomejs ca cri No cuch filo	sm or directory					
FideLogtch@kito	to home1\$ cd /cr	ism					
[jdeloatch@kito	to crism]\$ ls						
inages veka-3-	6-1 weka-3-6-1.	zip					11
[jdeloatch@kito	to crism]\$ ls im	ages					
30002_FEH1.png	30058.png	38138_PHY1.png	38277_NWF1.png	38333_ICE1.png	38391_HYD1.png	30451_FEIt1.png	
30002_HYD1.png	30062_FEN1.png	38138.png	38277_PHY1.png	38333_NWF1.png	30391_ICE1.png	30451_HYD1.png	
30002_1021.png	38862_HYD1.png	381.31_FER1.png	38277.png	38333_PHY1.png	38391_nW-1.png	30951_1021.png	
39992 DHV1 ppg	38862 NAE1 ppg	39131_ICE1_ppg	39298 HVD1 ppg	39339 FEMI ppg	30331_rm1.pmg	38451 DHV1 ppg	11
39992 nm	38862 PHV1 nng	39131 MAE1 mod	38288 ICE1 ppg	39339 HVD1 ppg	39493 FEMI non	39451 nng	11
30006 FEM1.ong	30062.png	38131 PHY1.png	38288 MJF1.png	38339 ICE1.png	30403 HYD1.ong	30452 FEM1.ong	
30006_HYD1_png	38863 FEML.png	38131.png	38288 PHY1.png	38339 MF1.png	30403 ICE1.png	30452 HYD1.png	11
30006_ICE1.png	30063_HYD1.png	38144_FEN1.png	38288.png	38339_PHY1.png	30403_NWF1.png	30452_ICE1.png	
30006_NWF1.png	30063_ICE1.png	38144_HYD1.png	38299_FEN1.png	38339 .png	30403_PHY1.png	30452_NAF1.png	
30006_PHY1.png	30063_NWF1.png	38144_ICE1.png	38299_HYD1.png	38347_FEH1.png	38483.png	30452_PHY1.png	11
30006 .png	30063_PHY1.png	38144_NWF1.png	38299_ICE1.png	38347_HYD1.png	30405_FEH1.png	30452.png	
30011_FER1.png	30063.png	38144_PHY1.png	38299_NW-1.png	38347_ICE1.png	38485_HYD1.png	30468_FER1.png	
30011_m01.png	20002_FERL.prg	38294 EEM mod	38299_Phtt.phg	38347_nwr1.png	30405_1UE1.png	30400_nt01.png	
39911 NAE1 ppg	39992_ITE1_pro	38234_FERL.prg	38391 FEMI ppg	30347_mmi.png	38485 DHV1 ppg	38468 MAE1 ppg	
39811 PHY1.000	39982 NAF1.mg	38234 ICE1.nng	38381 HVD1.nng	38354 FENInng	38485.mg	39468 PHY1.mm	
30011.png	38662_PHY1.png	38234_NWF1.png	38381_ICE1.png	38354_HYD1.png	38489_FEH1.png	30468.png	
30016_FEN1.png	30082.png	38234_PHY1.png	38381_NWF1.png	38354_ICE1.png	30409_HYD1 .png	30477_FEN1.png	
30016_HYD1.png	30668_FEH1.png	38234.png	38381_PHY1.png	38354_NWF1.png	38489_ICE1.png	38477_HYD1.png	11
30016_ICE1.png	38668_HYD1.png	38238_FEH1.png	38381.png	38354_PHY1.png	30409_NWF1.png	30477_ICE1.png	
30016_NWF1.png	30068_ICE1.png	38238_HYD1.png	38385_FEH1.png	38354 .png	38489_PHY1.png	30477_NWF1.png	- 111
30016_PHY1.png	30068_NAF1.png	38238_ICE1.png	38385_HVD1.png	38364_FEH1.png	38489 .png	38477_PHY1.png	
30016.png	30000 _PHY1.png	38238_nW-1.png	38385_1011.png	38364_HT01.png	30926_FERL.png	30977.png	
30020_FERL.phg 30028_HVD1_phg	30000 priy 30003 FEM mod	38238 nm	38385 DHV1 nng	30304_1UE1.phg	30426_ICE1_ppg	39478 HVD1 ppg	2
39928 ICE1.mg	39993 HVD1.mg	38241 FEM1_mma	38385.mg	38364 PHV1.mg	39426 MAE1_mmg	39478 ICE1.nng	
30828_NAF1.png	30093_ICE1.png	38241_HVD1.png	38387_FEH1.png	38364.png	30426_PHY1.png	38478_NWF1.png	
38828_PHY1.png	30093_NWF1.png	38241_ICE1.png	38387_HYD1.png	38366_FEH1.png	38426 .png	38478_PHY1.png	
30828.png	30093_PHY1.png	38241_NWF1.png	38387_ICE1.png	38366_HYD1.png	30427_FEH1.png	30478.png	Ă
30830_FEN1.png	30093.png	38241_PHY1.png	38387_MF1.png	38366_ICE1.png	38427_HYD1.png	30483_FEM1.png	Ŧ
30030_HYD1.png	38189_FEN1.png	38241.png	38387_PHY1.png	38366_NWF1.png	30427_ICE1.png	30483_HYD1.png	1

6. Creating Program in Mat Lab and Results

The CRISM team was unable to create a program in MAT LAB to automatically classify and analyze images.

All CRISM data granules were ultimately processed and surveyed individually and manually by a number of ECSU students including:

High School:

Latoya Simpson

Undergraduate:

Joyce Bevins

Justin Deloatch

Kaiem Frink

Karl Mohr

MyAsia Reid

Graduate:

Kevin Jones

References

[1] JHU.APL Webmaster. CRISM Compact Reconnaissance Imaging Spectrometer for Mars. March 15, 2010; from http://crism.jhuapl.edu/.

[2] Jim Wilson. NASA http://www.nasa.gov