

The Setup and Installation of the Dixon Hall
Supercomputing Pool

Brian Campbell Senior Elizabeth City State University
Unquiea B. Wade, Junior Elizabeth City State University
Bryce Carmichael, Senior Elizabeth City State University

Abstract- The international polar year was designed to
study and better understand the current state of the
climatic changes to the world’s ice sheets. For the last
few decades, there have been automated weather
stations and satellites in geo-synchronous orbit that
created data sets. Today, numerous amounts of data
are unexplored due to insufficient funding and the
scarcity of resources. For this reason, the polar grid
concept was proposed to delegate the analysis of the
existing data sets.
 The goal of the Elizabeth City State University’s
Polar Grid Team was to construct a model network to
serve as a base for a super computing pool. The super
computing pool will be constructed on the university’s
campus and linked to the overall polar grid system.
Numerous Software and protocols were researched
that are currently in use at other institutions around
the nation. From the possible protocols, the condor
software was chosen. Condor was created and
developed at the University of Wisconsin because of
easier usage and its willingness for expansion.
 An eighteen node computing pool was constructed
and tested within Dixon Hall's second floor lab using
Condor. This pool was comprised of seventeen desk-
tops running on a Windows NT platform, with the
pool's mater housed in Lane hall acting as a Linux
based server.

I. INTRODUCTION

he Polar Grid Team is comprised of, Brian
Campbell, Unquiea Wade and Bryce

Carmichael. Under the supervision of Dr. Eric
Akers, work on the project began in the fall of
2007, as part of the overall research effort at
Elizabeth City State University. The task of the
Polar Grid Team was to configure the first of
numerous computers to be added to the ECSU
computing pool.

 The first task performed was the collection of
data pertaining to high throughput networking,
including software options and the analysis of
networks currently in operation. This step was

the most time consuming due to the teams
varying levels of experience in the field of
networking and computer science.
 The second phase included the installation
and configuration of the virtual network linking
the computers in the Dixon hall laboratory to
the master server in lane hall this in itself was a
problem due to name and access protocol. The
final stage of the project is still currently being
performed which is an orientation to the
operation and monitoring of the condor system.
In this stage we sought to familiarize ourselves
with the protocol for the submission of a task to
the system and to understand the various
outputs and diagnostic tools available through
the condor software.

A. Super Computing

 In the beginning of our research it was
important to understand what is meant by the
term supercomputing. The term was originally
coined in reference to computer systems which
were capable of running at speeds and
efficiency greater than what was readily
available to the public, by several orders of
magnitude. For the majority of its short history
this was done by building systems to meet the
requirement out of extreme high-end materials
and technologies.

B. Parallel vs. Distributed

 As supercomputing progressed, the limits of
what was possible using these expensive
material was quickly exceeded, limited by
space, temperature and cost. The short coming
of the single system approach was quickly
acknowledged, leading to the development of

T

protocol for extending the processing power of
a network without the need to purchase the
expensive high end components. This was
accomplished by linking several independent
processors on to a single logic sharing network.
 Parallel processing as this was called links all
of the networks processor to work as a single
unit, taking on a single task with the efficiency
afforded by shear number. This method
provided the increases to work load capability
that was desired, but developed several draw
backs as the needs of the computing network
changed. It was troublesome to reconfigure,
when adding new nodes the entire system was
required to change. Since the processor all
acted as a single unit if one was busy all were
busy, this lead to an abundance of idle time
within the system on smaller jobs. Second as
the networks began to expand it became
necessary to increase the amount of
communication between the individual
processors and the master server.
Communication traffic began to affect the
efficiency of the system significantly after 50 to
60 nodes were added. This has been
compensated for by increasing the complexity
of communication and networking algorithms,
but the underlying problem persisted.
 In response to these deficiencies a second
form of multi-node processing arose to
compensate. In a method termed distributed
processing a single job is broken in to several
parts with each part assigned to an individual
node (processor) the processors the run
separately communicating only when task were
completed or when data had to be transferred
effectively minimizing communication across
the network. This innovation allowed single
networks to run multiple jobs simultaneously
effectively eliminating idle time, and could be
applied to treat entire parallel sets as a single
node allowing the easy expansion of both types
of computing.

II. METHODOLOGIES

A. Condor

 Both of these types of computing networks

make use of cheap, easily acquired components
and software to amplify the power of the entire
network. We choose to implement a distributed
computing model as the base for the project
because of its ease expansion and its non-
centralized design. With the model chosen we
began research in to the different software and
protocols that could be use to establish such a
system. Our searches lead us to several
organizations through out America each
applying the super computing model. Of the
networks studied the most highly recommended
was a software program developed by the
University of Wisconsin known as Condor.
Condor had the benefits of being able to
configure for both parallel and distributed
systems. It also has the ability to operate on
multiple OS platforms simultaneously;
Although Condor comes with several
administrative tools such as the checkpoint
program, which can only be accessed on a
Linux or UNIX platform.
 The software accessibility was a big draw.
In order to further the development of the
science of super computing, the University of
Wisconsin has given open source rights to the
condor source code. They have allowed easy
download from the project condor home page at
http://www.cs.wisc.edu/condor/. Along with
the program downloads this page also offers an
installation guide, user manual and example
programs that can be run to test configuration.
This site became one of our primary sources in
the installation and trouble shooting of the
network.
 The first step in the installation of the system
was the establishment of the systems primary
master the software was loaded onto the subject
device and installed using OS based installation
software. The software was initially installed on
a windows machine known as CERSER-1
located on site within the Dixon hall computing
lab. But was relocated due to a naming
redundancy and the benefits of running the
master out of a Linux platform, such as access
to the standard universe which contains condors
proprietary code and administrative tools. It
was also necessary to isolate the master from
the system so that user traffic could not

interfere with its administrative operation.
 Due to the need for reliable communication
the master node had to be installed on a
machine with a static IP address so that the
identity of the master could be insured to be
constant in case of blackouts or the unforeseen.
To further communication some changes had to
be made to the configuration of all the
machines altering the read and write privileges
to include the qualifier 10.*.*.*, this allowed
files to be accessed remotely and for any
requested out puts to be copied to the task's
source node.
 The remaining seventeen nodes within the
pool were configured on Windows NT
platforms this was for no other reason then it
was the current OS platform for these
machines. The same additions were made to
the read and write access line of the
configuration allowing communication. The IP
address of the master was set to 10.40.20.37 as
host name for the master node. After these
initial changes were made within the first
machines attached to the group the others came
into the system without impedance.
 In a condor network task can be submitted
from any node to the master. This is done
through an ssh shell environment by entering
the condor_submit command followed by the
name of the executable file. This ease of
submission was in the forefront of reasons for
selecting the condor platform for our project.
Jobs could be written in any executable format
for submission to what is known as the vanilla
universe. In this universe the majority of condor
special features are nonfunctional to simplify
the administration of the job.
 Within the standard condor universe jobs can
be submitted to the master using a Linux/ Unix
based converter to access condor proprietary
languages code allowing access to more in
depth control over the execution of the jobs.
Using this specialized code a skilled
programmer can designate the type of platform
to run each task or the number of nodes to be
used, and put into place “checkpoints” at which
the process will be halted in order to allow an
examination of the output at different stages
within the processing.

 The output from any task must be specified
within the code of the executable and will be
written to the console where the job was
originally submitted within the condor bin by
default or to the specified location. However
Condor offer two file types which are
automatically placed within the task files
directory known as file.error and file.log,
relatively self explanatory file.error houses any
error reports that may occur during the
processing and file.log will record time reliant
data throughout the duration of the task,
including time of submission time, task time,
cpu usage time and downtime. Such
information can also be accessed during the
processing using the condor_q and
condor_status commands within the bin
directory of condor.
 The condor_q is a list of job submission
statuses, this command will show the number
of task awaiting processing the task currently
being run in conjunction with information of
the CPU currently running and will show
duration, start and stop times for tasks
performed recently within the system. This file
is useful in tracing the progress of a task
through the system and has aided us
significantly in troubleshooting the network.
Though it has a draw back, unless emptied on a
regular basis this file can become sizable rather
quickly making it difficult to locate the proper
information in a timely manner.
 The condor status command another which
we made extensive use of in the
troubleshooting the network, outputs a file
containing a list of host names and IP addresses
associated with members of the pool. It also
gives information as to the current availability
of node on the system. The availability is
shown through a group of one word qualifiers
in the forth column of the display. The possible
qualifiers are; claimed, meaning the nodes is
currently active in the processing of a job. The
Unclaimed qualifier signifies that the node is
free to take on a job, but may not meet the
requirements. Matched indicates that the node
meets the qualifications necessary to perform
the submitted task. There have been two busy
qualifiers that have come up through

submission of the task, unavailable with means
that for what ever reason the computer has
declined or is otherwise unable to perform the
task and owner, which indicates that there is
someone working as a user on the node in
question.

III. RESULTS

 To date we have added only 17 nodes to the
condor pool excluding the setup of the master
in lane hall making the total 18. This has
opened the gate for any console on the ECSU
grid to be added using the above configuration.
No attempt has been made to attach the pool to
the polar grid system but it is expected that it
will be accomplished with relative ease.
 Simple counting and outputting programs
have been submitted to the pool to test the
network, but the full capability of the pool has
not been tested. During the trouble shooting of
the Dixon hall system it was found that there
were two naming redundancies there were with
two consoles answering to Cerser-1 and another
pair answering to cerser-12. The redundancies
were easily fixed by changing the nodes host
name, but it should be noted that nodes within
the pool can only hold record of one IP address
per host name. Duplication of a host name is
not allowed on the network; the master will
choose randomly between the nodes sharing the
name and ignore the others. This caused a
profound amount of trouble since CERSER-1
was selected to be the original master for the
pool; because of the redundancy no
communication was possible.

IV. CONCLUSION

 The future expansion of the project should be
easily accomplished and with the right
oversight and planning can progress without
limit. To preserve simplicity the number of
nodes on any single pool should be limited and
multiple pools should be constructed around
local masters to be connected to the main
system as a parallel node. This will allow a
simple repetitive naming convention and the
partitioning will allow the isolation of a local

pool if it should become necessary.
 A down side to the distribution of the
network across the campuses labs is that the
computing functions will be subject to interrupt
by the day to day user traffic. It may be wise
to continue to isolate a cpu as a dedicated
master for each pool saving it from the random
interruptions. It is my suggestion that the
construction of at least one dedicated pool
should be considered for use by priority tasks,
and that the configuration is reexamined after
the completion of the pool as it is now a task
must be restarted at any interruptions and this
could lead to a lot of wasted time.

V. FUTURE WORK

 The continuation of this project would
immediately install the software through the
Ubuntu portal in Dixon to accentuate the
windows pool. Then the Lane hall computer lab
should be added to the pool we suggest that
these also be introduced through a UNIX
platform. The condor software is available for
the MAC, but has many of the same limitations
as the windows machines. After the
assimilation of the lane hall lab the network can
be spread to other areas of the campus at the
cost of the dedicated master. We see no reason
not to continue the use of the schools existing
network for communication.
 Attachment to the polar grid system may
have to wait as the system grows but groups
should be encourage to submit task to our pool
to foster the relations and to familiarize the
CERSER teams with condor operations.
Workshops and training should be conducted to
allow students to make full use of the system.
We have an opportunity to draw some real
attention to ECSU and we should not let his
simple progressive technology to pass us by.

VI. REFERENCES

1. Andrew S. Tanenbaum, Maarten Van
Steen (2002): Distributed Systems Principles
and Paradigms. New Jersey: Prentice- Hall Inc.
2. Amza C., A.L. Cox, S. Dwarkadas, P.
Keleher, R. Rajamony H. Lu, W. Yu, and

W.Zwaenepoel. ThreadMarks: Shared memory
computing on networks of workstations, to
appear in IEEE Computer,(draft copy):
www.cs.rice.edu/willy/TreadMarks/papers.html
3. A.J. van der Steen, An evaluation of
some Beowulf clusters, Technical Report WFI-
00-07, Utrecht University, Dept. of
Computational Physics, December 2000. (Also
available through www.euroben.nl, directory
reports/.)
4. A.J. van der Steen, Overview of recent
supercomputers high-end servers, June 2005,
www.euroben.nl, directory reports/.
5. University of Wisconsin,(2007) condor
user manual and installation guide retrieved
form
http://www.cs.wisc.edu/condor/manual/v7.0/
on the date of 10/31/07
6. University of California, (2007
Overview of Boinc, downloaded from
http://boinc.berkeley.edu/trac/wiki/BoincIntro
on the date of 01/21/08
7.

