
Assignment 1: Project Brainstorming and
Napkin Drawings
How are things going? Any questions? Ready to present this
afternoon?

1

• July 16
• Review available COVID-19 data
• Brainstorm ideas
• Come up with a team name for your GitHub repository

• July 17
• Morning, Part 1: Technology overview for implementing gateways
• Morning, Part 2: Prepare napkin drawing presentations
• Afternoon: Each team gives their napkin drawing presentation “pitches”

Schedule for July 16-17

Communication
and
Collaboration

What you need to work together

Communication

I’ve created a Slack channel, #2020-summer-coding-institute, that
you can use to contact each other or your mentors.

Each team has its own dedicated slack channel

Feel free to email me also: marpierc@iu.edu

mailto:marpierc@iu.edu

Collaboration

If you don’t have a GitHub account,
please create one.Create

Send me your GitHub usernameSend

I will add you to the SGCI-2020-Coding-
Institute GitHub repoAdd

Each team gets its own repoGet

Choosing a Technology
Stack for Your Projects

You Have a
Few Choices

• You can use one of the gateway
technologies from this week’s
tutorials.

• You can use a simple one that I’ve
outlined here

• https://github.com/SGCI-2020-
Coding-Institute/sgci-summer-
school

• But this needs to be your team’s
decision

https://github.com/SGCI-2020-Coding-Institute/sgci-summer-school

No Matter What You
Choose...

Use GitHub

Your Top
Priority: Build
a Working
Prototype

Concentrate on implementing your
napkin drawing idea.

Use GitHub to share code.

Everyone should contribute

Roles: Architect, Developer, UX Designer,
Quality Assurance Tester, Operator

Project Challenge Levels
Use these if you are using the project template at

https://github.com/SGCI-2020-Coding-Institute/sgci-
summer-school

https://github.com/SGCI-2020-Coding-Institute/sgci-summer-school

Optional Project Challenge Levels

Put your code in a docker containerChallenge 1

Deploy your container into KubernetesChallenge 2

Deploy your code on JetstreamChallenge 3

Automatically update your Jetstream deployment whenever you
push a commit to your GitHub repositoryChallenge 4

Representational State
Transfer (REST)

Applications to Science Gateways

From the Source: Roy Fielding

"Representational State Transfer is intended to evoke an image of how
a well-designed Web application behaves: a network of web pages (a
virtual state-machine), where the user progresses through an
application by selecting links (state transitions), resulting in the next
page (representing the next state of the application) being transferred
to the user and rendered for their use."

Fielding, Roy Thomas. "Architectural styles and the design of network-based software architectures." PhD diss., University of
California, Irvine, 2000.

In Other Words…

• REST is a generalization of the way the Web works

Generalize this for machine-to-machine.

REST and APIs, Style #1

User Interface
Server

Application
ServerBrowser APISDK

HTTP HTTP

The API and the SDK can be implemented in different programming languages.

REST and APIs, Style #2

Application
ServerBrowser APIJS

SDK

HTTP

Use JavaScript in the browser as the REST client. Have the Application Server send JSON.

Features of the HTTP Protocol in REST
• HTTP official specifications

• https://tools.ietf.org/html/rfc2616
• Request-Response
• Uses URLs to identify and address

resources.
• Limited set of operations

• GET, PUT, POST, DELETE, HEAD, ...
• Transfers hypermedia in the body

• HTML, XML, JSON, RSS, Atom, etc.
• Extendable by modifying its header

• Security, etc.
• Point to point security

• TLS: transport level
• Well defined error codes

https://tools.ietf.org/html/rfc2616

REST and HTTP

• In REST, HTTP operations are VERBS.
• There are only ~4 verbs.

• URLs are NOUNS
• Right: ”/userID”
• Wrong: “/getUserID”, “/updateUserID”.
• Why?

• VERBS act on NOUNS to change the resource state.
• Client states are contained in the response message.
• Resource states are maintained by the server

Status Codes and Errors

• REST services return HTTP status codes.
• Return the right codes.

• 200’s: everything is OK
• 400’s: client errors: malformed request, security errors, wrong URLs
• 500’s: server errors: processing errors, proxy errors, etc

• Error codes are machine parse-able.
• HTTP doesn’t have application specific errors for your service.

Some REST Advantages

• Leverage 25 years of HTTP investments
• Security, extensibility, popularity

• Low entry barrier to get people to try your service
• Use curl command to try things out

• Message format independent
• Like JSON? Use JSON
• Like XML? Use XML
• Like CSV?

Hypermedia as the Engine of Application State

HATEOAS
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

You Are Doing It Completely Wrong

• REST APIs evolve.
• You add new features.
• You change the message formats
• You change the URL patterns

• This breaks RPC-ish clients.
• Maintaining backward compatibility for legacy clients gets harder over time

• HATEOAS is a “design pattern” to prevent this problem.
• Keep your clients and server loosely coupled
• Part of Fielding’s original REST conception that is frequently overlooked.

H is for Hypermedia

• Main idea of HATEOAS: REST services return hypermedia responses.
• Hypermedia is just a document with links to other documents.
• In ”proper” REST, hypermedia documents contain links to what the

client can do.
• Semantics of the API need to be understood and defined up front.
• Specific details (links that enable specific actions) can change
• Change can occur over different time scales

• Resource state changes (think: buying an airplane ticket)
• Service version changes

HATEOAS in Brief
• Responses return documents consisting of links.
• Use links that contain “rel”,“href”, and “type” or equivalent.
• The specific links in a specific message depend on the current state of

the dialog between client and server.
• Not every message contains all of your rels.

Attribute Description

Rel This is a noun. You should have persistent, consistent “rels” for all your
nouns.

Href This is the URL that points to the “rel” noun in a specific interaction.

Type This is the format used in the communications with the href. Many
standard types (”text/html”). Custom types should follow standard
conventions for naming

http://www.slideshare.net/josdirksen/rest-from-get-to-hateoas

http://www.slideshare.net/josdirksen/rest-from-get-to-hateoas

JSON, XML, HTML, and HATEOAS

• What’s the best language for HATEOAS messages?
• JSON: you’ll need to define “link” because JSON doesn’t have it.
• XML:

• Extensions like XLINK, RSS and Atom are also have ways of expressing the
“link” concepts directly.

• Time concepts built into RSS and Atom also: use to express state machine
evolution.

• HTML: REST is based on observations of how the Web works, so
HTML obviously has what you need.

The OpenAPI Specification
and Swagger

Using REST to describe REST services

REST Description Languages

• General problem to solve: REST services need to be discoverable and
understandable by both humans and machines.

• “Self Describing”
• API developers and users are decoupled.

• There are a lot of attempts:
https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Description
_Languages

https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Description_Languages

Real problem #1: humans
choose APIs, but then the

APIs evolve, endpoints
change, etc.

Examples of Real Problem #1

• You add a new API method
• You change the way an old API method works.
• You change the inputs and outputs
• You want to add some error handling hints associated with the API
• You change API end points.

HATEOAS may help with some of this.

Real problem #2: Data
models are out of scope

for REST

More about Real Problem #2

• Science gateway data model examples
• Computing and data resources, applications, user experiments

• Data models can be complicated to code up so every
client has a local library to do this.

• Data models evolve and break clients.
• HATEOAS types in data models depend on data model

language (JSON, XML, etc).

Usual solution is to create an
SDK wrapper around the API.

Helps users use the API correctly, validate data against
data models, etc.

Swagger -> OpenAPI Initiatve, or OAI

• OAI helps automate SDK creation for REST services
• Swagger was a specification for describing REST services
• Swagger is tools for implementing the specification
• OpenAPI Initiative spins off the specification part
• OAI is openly governed, part of the Linux Foundation, available from

GitHub
• https://github.com/OAI/OpenAPI-Specification

https://github.com/OAI/OpenAPI-Specification

OAI Goals

• Define a standard, language-agnostic interface to REST APIs
• Allow both humans and computers to discover and understand the

capabilities of the service without access to source code,
documentation, or through network traffic inspection.

• When properly defined, a consumer can understand and interact with
the remote service with a minimal amount of implementation logic.

• Similar to what interfaces have done for lower-level programming,
Swagger removes the guesswork in calling the service.

http://swagger.io/introducing-the-open-api-initiative/

”Hello
World!” in
OAI

http://swagger.io/getting-started-with-swagger-i-what-is-swagger/

More examples:
https://github.com/OAI/
OpenAPI-
Specification/tree/mast
er/examples/v2.0/json

https://github.com/OAI/OpenAPI-Specification

Swagger Tools

http://swagger.io/tools/

Creating OAI Definitions

• Top Down: You Don’t Have an API
• Use the Swagger Editor to create your Swagger definition
• Use the integrated Swagger Codegen tools to generate server

implementation.

• Bottom Up: You Already Have an API
• Create the definition manually using the same Swagger Editor, OR
• Automatically generate the Swagger definition from your API

• Supported frameworks: JAX-RS, node.js, etc

• My advice: be careful with automatically generated code.

Swagger
and the XSEDE
User Portal

https://api.xsede.org/swagger/

https://portal.xsede.org/

https://api.xsede.org/swagger/

REST and Science Gateways

Applying to Science Gateways

REST and Science Gateways
• Your actions are already defined: GET, etc
• Define your nouns and noun collections: you need to get this right

• Computing resources: static information and states
• Applications: global information about a specific scientific application
• Application interfaces: resource specific information about an application
• Users
• User experiments: static information and states

• Define data models for your nouns
• You will get this wrong, but don’t worry

• Define the operation patterns on your nouns
• Composed of request-response atomic interactions

• You need to specify your HATEOAS hypermedia formats
• Your operation patterns map to these.

	Assignment 1: Project Brainstorming and Napkin Drawings
	Schedule for July 16-17
	Communication and Collaboration
	Communication
	Collaboration
	Choosing a Technology Stack for Your Projects
	You Have a Few Choices
	No Matter What You Choose...
	Your Top Priority: Build a Working Prototype
	Project Challenge Levels
	Optional Project Challenge Levels
	Representational State Transfer (REST)
	From the Source: Roy Fielding
	In Other Words…
	Slide Number 16
	REST and APIs, Style #1
	REST and APIs, Style #2
	Features of the HTTP Protocol in REST
	REST and HTTP
	Status Codes and Errors
	Slide Number 24
	Some REST Advantages
	Hypermedia as the Engine of Application State
	You Are Doing It Completely Wrong
	H is for Hypermedia
	HATEOAS in Brief
	Slide Number 30
	Slide Number 31
	JSON, XML, HTML, and HATEOAS
	The OpenAPI Specification and Swagger
	REST Description Languages
	Slide Number 35
	Examples of Real Problem #1
	Real problem #2: Data models are out of scope for REST
	More about Real Problem #2
	Usual solution is to create an SDK wrapper around the API.
	Swagger -> OpenAPI Initiatve, or OAI
	OAI Goals
	”Hello World!” in OAI
	Swagger Tools
	Creating OAI Definitions
	Swagger �and the XSEDE User Portal
	REST and Science Gateways
	REST and Science Gateways

