
S. Charlie Dey, Director of Training and Professional Development

Python 101

1

Agenda
⦁ Introduction to the Jupyter Notebook
⦁ Welcome to Python

⦁ Variables and Data Types
⦁ Arithmetic Operations
⦁ Output and File/IO

Control Flow
⦁ Lists
⦁ User Defined Functions
⦁ Anonymous Functions

2

https://jupyter.tacc.cloud

3

What are Jupyter Notebooks?
A web-based, interactive computing tool for
capturing the whole computation process:
developing, documenting, and executing code,
as well as communicating the results.

4

How do Jupyter Notebooks Work?
An open notebook has exactly one interactive session connected to a kernel

which will execute code sent by the user and communicate back results.
This kernel remains active if the web browser window is closed, and
reopening the same notebook from the dashboard will reconnect the web
application to the same kernel.

What's this mean?
Notebooks are an interface to kernel, the kernel executes your code and

outputs back to you through the notebook. The kernel is essentially our
programming language we wish to interface with.

5

Jupyter Notebooks, Structure
• Code Cells

Code cells allow you to enter and run code
Run a code cell using Shift-Enter

• Markdown Cells
Text can be added to Jupyter Notebooks using Markdown cells.
Markdown is a popular markup language that is a superset of
HTML.

6

Jupyter Notebooks, Structure
• Markdown Cells

You can add headings:
Heading 1
Heading 2
Heading 2.1
Heading 2.2

You can add lists
1. First ordered list item
2. Another item
⋅⋅* Unordered sub-list.
1. Actual numbers don't matter, just that it's a number
⋅⋅1. Ordered sub-list
4. And another item.

7

Jupyter Notebooks, Structure
• Markdown Cells

pure HTML
<dl>
<dt>Definition list</dt>
<dd>Is something people use sometimes.</dd>

<dt>Markdown in HTML</dt>
<dd>Does *not* work **very** well. Use HTML tags.</dd>

</dl>
And even, Latex!

$e^{i\pi} + 1 = 0$

8

Jupyter Notebooks, Workflow
Typically, you will work on a computational problem in
pieces, organizing related ideas into cells and moving
forward once previous parts work correctly. This is much
more convenient for interactive exploration than breaking
up a computation into scripts that must be executed
together, as was previously necessary, especially if parts of
them take a long time to run.

9

Jupyter Notebooks, Workflow
Let a traditional paper lab notebook be your guide:

Each notebook keeps a historical (and dated) record of the analysis as
it’s being explored.

The notebook is not meant to be anything other than a place for
experimentation and development.

Notebooks can be split when they get too long.

Notebooks can be split by topic, if it makes sense.

10

Jupyter Notebooks, Shortcuts
● Shift-Enter: run cell

● Execute the current cell, show output (if any), and jump to the next

cell below. If Shift-Enter is invoked on the last cell, a new code

cell will also be created. Note that in the notebook, typing Enter on

its own never forces execution, but rather just inserts a new line in

the current cell. Shift-Enter is equivalent to clicking the Cell |

Run menu item.

11

Jupyter Notebooks, Shortcuts
● Ctrl-Enter: run cell in-place

● Execute the current cell as if it were in “terminal mode”, where any

output is shown, but the cursor remains in the current cell. The cell’s

entire contents are selected after execution, so you can just start

typing and only the new input will be in the cell. This is convenient

for doing quick experiments in place, or for querying things like

filesystem content, without needing to create additional cells that

you may not want to be saved in the notebook.
12

Jupyter Notebooks, Shortcuts
● Alt-Enter: run cell, insert below

● Executes the current cell, shows the output, and inserts a new cell

between the current cell and the cell below (if one exists). (shortcut

for the sequence Shift-Enter,Ctrl-m a. (Ctrl-m a adds a new

cell above the current one.))

● Esc and Enter: Command mode and edit mode

● In command mode, you can easily navigate around the notebook

using keyboard shortcuts. In edit mode, you can edit text in cells.
13

Introduction to Python
Hello World!
Data types
Variables
Arithmetic operations
Relational operations
Input/Output
Control Flow

14

Do not forget:

Indentation matters!

Python
print(“Hello World!”)

15

Let's type that line of code into a Code Cell, and hit Shift-Enter:

Hello World!

Python
print(5)
print(1+1)

16

Let's add the above into another Code Cell, and hit Shift-Enter

5
2

Python - Variables

17

You will need to store data into variables
You can use those variables later on
You can perform operations with those variables
Variables are declared with a name, followed by ‘=‘ and a value

An integer, string,…
When declaring a variable, capitalization is important:

‘A’ <> ‘a’

Python - Variables

18

in a code cell:
five = 5
one = 1
twodot = 2.0
print (five)
print (one + one)
message = “This is a string”
print (message)
Notice: We're not "typing" our variables, we're just setting them and allowing Python to type
them for us.

Python - Data Types

19

in a code cell:
integer_variable = 100
floating_point_variable = 100.0
string_variable = “Name”

Notice: We're not "typing" our variables, we're just setting them and allowing Python to type
them for us.

Python - Data Types

20

Variables have a type
You can check the type of a variable by using the type() function:

print (type(integer_variable))
It is also possible to change the type of some basic types:
str(int/float): converts an integer/float to a string
int(str): converts a string to an integer
float(str): converts a string to a float

Be careful: you can only convert data that actually makes sense to be
transformed

Python - Arithmetic Operations

21

+ Addition 1 + 1 = 2
- Subtraction 5 – 3 = 2
/ Division 4 / 2 = 2
% Modulo 5 % 2 = 1
* Multiplication 5 * 2 = 10
// Floor division 5 // 2 = 2
** To the power of 2 ** 3 = 8

Python - Arithmetic Operations

22

Some experiments:

print (5/2)
print (5.0/2)
print ("hello" + "world")
print ("some" + 1)
print ("number" * 5)
print (3+5*2)

Python - Arithmetic Operations

23

Some more experiments:

number1 = 5.0/2
number2 = 5/2

what type() are they?
type(number1)
type(number2)

now, convert number2 to an integer:
int(number2)

Python - Reading from the Keyboard

24

Let put the following into a new Code Cell:

numIn = input("Please enter a number: ")

Let's run this cell!

Python - Reading from the Keyboard

25

Let put the following into a new Code Cell:

stringIn = input("Please enter a string: ")

Let's run this cell!

put the word Hello as your input.

What happened?

Python - Making the output prettier

26

Let put the following into a new Code Cell:

print ("The number that you wrote was : ", numIn)
print ("The number that you wrote was : %d" % numIn)

print ("the string you entered was: ", stringIn)
print ("the string you entered was: %s" % stringIn)

print (" your string: %s\n your number: %d", %(numIn, stringIn))

for floating points, use %f

Want to make it prettier?
\n for a new line
\t to insert a tab

Python - Writing to a File

27

Let put the following into a new Code Cell:

my_file = open("output_file.txt",'w')
var1 = "This is a string\n"
my_file.write(vars)
var2 = 10
my_file.write("\n")
my_file.write(str(var2))
var3 = 20.0
my_file.write("\n")
my_file.write(str(var3))
my_file.close()

Python - Reading from a File

28

When opening a file, you need to decide “how” you want to open it:
Just read?
Are you going to write to the file?
If the file already exists, what do you want to do with it?
r read only (default)
w write mode: file will be overwritten if it already exists
a append mode: data will be appended to the existing file

Python - Reading from a File

29

Let's read from the file we created in the previous cell.

my_file = open(“output_file.txt”,’r’)
content = my_file.read()
print(content)
my_file.close()

Python - Reading from a File

30

Let's read it line by line

my_file = open("output_file.txt",'r')
var1 = my_file.readline()
var2 = my_file.readline()
var3 = my_file.readline()
var4 = my_file.readline()
print("String: ", var1)
print(“Blank: “, var2)
print("Integer: ", var3)
print("Float: ", var4)
my_file.close()

Python - Reading from a File

31

Tweak it a bit to make the code easier to read… introducing 'with'!
‘with’ will very nicely close your file for you
(Note the indentation!!)

with open("output_file.txt",'r') as f:
var5 = f.readline()
var6 = f.readline()
var7 = f.readline()
var 8 = f.readline()
print("String: ", var5)
print(“Blank: “, var6)
print("Integer: ", var7)
print("Float: ", var8)

Python - Control Flow

32

So far we have been writing instruction after instruction where every
instruction is executed

What happens if we want to have instructions that are only executed if a
given condition is true?

Python - if/else/elif

33

Let's look at some example of booleans.
type the following into a code cell

a = 2
b = 5

print (a>b)
print (a<b)
print (a == b)
print (a != b)
print (b>a or a==b)
print (b<a and a==b)

Python - if/else/elif

34

The if/else construction allows you to define conditions in your program

(Don’t forget your indentation!!)

if conditionA:
statementA

elif conditionB:
statementB

else:
statementD

this line will always be executed (after the if/else)

Python - if/else/elif

35

The if/else construction allows you to define conditions in your program

(Indentation is IMPORTANT!)

if conditionA:
statementA

elif conditionB:
statementB

else:
statementD

this line will always be executed (after the if/else)

conditions are a datatype known as booleans, they can only be true or false

Python - if/else/elif

36

A simple example

simple_input = input(“Please enter a number: “)
if (int(simple_input)>10):

print ("You entered a number greater than 10")
else:

print ("you entered a number less than 10")

Python - if/else/elif

37

You can also nest if statements together:

if (condition1):
statement1
if (condition2):

statement2
else:

if (condition3):
statement3 # when is this statement executed?

else: # which ‘if’ does this ‘else’ belong to?
statement4 # when is this statement executed?

Exercise:
enter a number from the keyboard into a variable.

using type casting and if statements, determine if
the number is even or odd

Python - For Loops

39

When we need to iterate, execute the same set of instructions over and over
again… we need to loop! (and introducing range())

(Indentation is IMPORTANT!)

for x in range(0, 3):
print ("Let's go %d" % x)

Python - For Loops, nested loops

40

When we need to iterate, execute the same set of instructions over and over
again… we need to loop! and introducing range()

for x in range(0, 3):
for y in range(0,5):

print ("Let's go %d %d" % (x,y))

Exercise:
using nested for-loops and nested if statements,
write a program that loops from 3 to 1000 and
print out the number if it is a prime number.

Exercise:
using a for loop, find the triples that satisfies:

a*a + b*b = c*c
where

0 < a < 100
0 < b < 100

Python - While Loops

43

Sometimes we need to loop while a condition is true...

(remember to indent!)

i = 0 # Initialization
while (i < 10): # Condition

print (i) # do_something
i = i + 1 # Why do we need this?

Exercise:
using a while loop, find the prime numbers less
than 1000

Python - lists

45

A list is a sequence, where each element is assigned a position (index)
First position is 0. You can access each position using []
Elements in the list can be of different type

mylist1 = [“first item”, “second item”]
mylist2 = [1, 2, 3, 4]
mylist3 = [“first”, “second”, 3]
print(mylist1[0], mylist1[1])
print(mylist2[0])
print(mylist3)
print(mylist3[0], mylist3[1], mylist3[2])
print(mylist2[0] + mylist3[2])

Python - lists

46

It’s possible to use slicing:
print(mylist3[0:3])
print(mylist3)

To change the value of an element in a list, simply assign it a new value:
mylist3[0] = 10
print(mylist3)

Python - lists

47

There’s a function that returns the number of elements in a list
len(mylist2)

Check if a value exists in a list:
1 in mylist2

Delete an element
len(mylist2)
del mylist2[0]
print(mylist2)

Iterate over the elements of a list:
for x in mylist2:

print(x)

Python - lists

48

There are more functions
max(mylist), min(mylist)

It’s possible to add new elements to a list:
my_list.append(new_item)

We know how to find if an element exists, there’s a way to return the
position of that element:
my_list.index(item)

Or how many times a given item appears in the list:
my_list.count(item)

Exercise:
create a 3 lists:

one list, x, holding numbers going from 0 to 100

one list, y1, holding x*x

one list, y2, holding x*x*x

write these out to a file with the format:

x, y1, y2

Python - user defined functions

50

User-defined functions are reusable code blocks; they only need to be
written once, then they can be used multiple times. They can even be
used in other applications, too.

These functions are very useful, from writing common utilities to specific
business logic. These functions can also be modified per requirement.

The code is usually well organized, easy to maintain, and developer-friendly.
As user-defined functions can be written independently, the tasks of a

project can be distributed for rapid application development.
A well-defined and thoughtfully written user-defined function can ease the

application development process.

Python - user defined functions

51

Step 1: Declare the function with the keyword def followed by the function
name.

Step 2: Write the arguments inside the opening and closing parentheses of the
function, and end the declaration with a colon.

Step 3: Add the program statements to be executed.

Step 4: End the function with/without return statement.

Python - user defined functions

52

def userDefFunction (arg1, arg2, arg3
...):

program statement1
program statement3
program statement3
....

return;

Exercise:
write a user defined function that accepts an
integer as an argument then prints out that many
number of prime numbers

Exercise:
write a user defined function that accepts an
integer as a parameter then returns the next
prime number.

Exercise:
A prime gap is the difference between two successive prime numbers. The n-
th prime gap, denoted gn or g(pn) is the difference between the (n + 1)-th
and the n-th prime numbers

Write a program that uses your prime number generator functions and print
out the first set of prime numbers where the prime gap is greater than 13

Python - Anonymous Functions

56

type the following into a cell:

x = lambda a: a * 10

print (x(10))

Python - Anonymous Functions

57

try the following definition:
def myfunc(x):

return lambda a: a*x

y = myfunc(10)
print (y(5))
z = myfunc(100)
print (z(5))

Questions? Comments?

58

	Python 101
	Agenda
	Slide Number 3
	What are Jupyter Notebooks?
	How do Jupyter Notebooks Work?
	Jupyter Notebooks, Structure
	Jupyter Notebooks, Structure
	Jupyter Notebooks, Structure
	Jupyter Notebooks, Workflow
	Jupyter Notebooks, Workflow
	Jupyter Notebooks, Shortcuts
	Jupyter Notebooks, Shortcuts
	Jupyter Notebooks, Shortcuts
	Introduction to Python
	Python
	Python
	Python - Variables
	Python - Variables
	Python - Data Types
	Python - Data Types
	Python - Arithmetic Operations
	Python - Arithmetic Operations
	Python - Arithmetic Operations
	Python - Reading from the Keyboard
	Python - Reading from the Keyboard
	Python - Making the output prettier
	Python - Writing to a File
	Python - Reading from a File
	Python - Reading from a File
	Python - Reading from a File
	Python - Reading from a File
	Python - Control Flow
	Python - if/else/elif
	Python - if/else/elif
	Python - if/else/elif
	Python - if/else/elif
	Python - if/else/elif
	Exercise:
	Python - For Loops
	Python - For Loops, nested loops
	Exercise:
	Exercise:
	Python - While Loops
	Exercise:
	Python - lists
	Python - lists
	Python - lists
	Python - lists
	Exercise:
	Python - user defined functions
	Python - user defined functions
	Python - user defined functions
	Exercise:
	Exercise:
	Exercise:
	Python - Anonymous Functions
	Python - Anonymous Functions
	Questions? Comments?

