
Numpy

Charlie Dey
Director, Training and Professional Development
charlie@tacc.utexas.edu

Monte Carlo
Pi

Sequential Algorithm
A Monte Carlo algorithm for approximating π

uniformly generates the points in the square [-1, 1] x
[-1, 1]. Then it counts the points which lie in the
ins ide of the unit circle.

Sequential Algorithm
A Monte Carlo algorithm for approximating π uniformly
generates the points in the square [-1, 1] x [-1, 1]. Then it
counts the points which lie in the ins ide of the unit circle.

Sequential Algorithm
An approximation of π is then computed by the

following formula:

Algorithm
double approximatePi(int numSamples)
{

float x, y;
int counter = 0;
for (int s = 0; s != numSamples; s++)
{

x = random number between -1, 1;
y = random number between -1, 1;

if (x * x + y * y < 1)
{

counter++;
}

}

return 4.0 * counter / numSamples;
}

Let's code this in Python, Google to see what command in Python
produces a random number

Linear Algebra
Applications

● Matrices in Engineering, such as a line of springs.
● Graphs and Networks, such as analyzing networks.
● Markov Matrices, Population, and Economics, such as population growth.
● Linear Programming, the simplex optimization method.
● Fourier Series: Linear Algebra for functions, used widely in signal processing.
● Linear Algebra for statistics and probability, such as least squares for regression.
● Computer Graphics, such as the various translation, rescaling and rotation of images.

7

Linear Algebra
Linear algebra is about linear combinations.

Using math on columns of numbers called
vectors and arrays of numbers called matrices
to create new columns and arrays of numbers.

Linear algebra is the study of lines and planes,
vector spaces and mappings that are required
for linear transforms.

8

Linear Algebra
Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.
Let's look at the following:

y = 4 * x + 1

describes a line on a two-dimensional graph

9

Linear Algebra
Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.
Let's look at the following:

y = 0.1 * x1 + 0.4 * x2
y = 0.3 * x1 + 0.9 * x2

line up a system of equations with the same form with two or more unknowns

10

Linear Algebra
Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.
Let's look at the following:

1 = 0.1 * x1 + 0.4 * x2
3 = 0.3 * x1 + 0.9 * x2

line up a system of equations with the same form with two or more unknowns

11

Linear Algebra
Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.
Let's look at the following, Ax = b :

5 = 0.1 * x1 + 0.4 * x2 + x3
10 = 0.3 * x1 + 0.9 * x2 + 2.0 * x3
3 = 0.2 * x1 + 0.3 * x2 - .5 * x3

ls there a x1, x2, x3 that solves this system?

12

Linear Algebra
Gaussian Elimination
The goals of Gaussian elimination are to make the upper-left corner element a 1

use elementary row operations to get 0s in all positions underneath that first 1

get 1s for leading coefficients in every row diagonally from the upper-left to lower-right
corner, and get 0s beneath all leading coefficients.

you eliminate all variables in the last row except for one, all variables except for two in the
equation above that one, and so on and so forth to the top equation, which has all the
variables. Then use back substitution to solve for one variable at a time by plugging the values
you know into the equations from the bottom up..

13

● You can multiply any row by a constant (other than zero).

● You can switch any two rows.

● You can add two rows together.

Linear Algebra
Gaussian Elimination, Rules

14

Linear Algebra

15

Transpose

A defined matrix can be transposed, which creates a new matrix with the

number of columns and rows flipped.

This is denoted by the superscript “T” next to the matrix.

An invisible diagonal line can be drawn through the matrix from top left to

bottom right on which the matrix can be flipped to give the transpose.

Linear Algebra

16

Inversion

Matrix inversion is a process that finds another matrix that when multiplied

with the matrix, results in an identity matrix.

Given a matrix A, find matrix B, such that AB or BA = In.

The operation of inverting a matrix is indicated by a -1 superscript next to

the matrix; for example, A^ -1. The result of the operation is referred to as

the inverse of the original matrix; for example, B is the inverse of A.

Linear Algebra

17

Trace

A trace of a square matrix is the sum of the values on the main

diagonal of the matrix (top -left to bottom -right).

Linear Algebra

18

Determinant

The determinant of a square matrix is a scalar representation of the

volume of the matrix.

The determinant describes the relative geometry of the vectors that

make up the rows of the matrix. More specifically, the determinant

of a matrix A tells you the volume of a box with sides given by rows

of A.

— Page 119, No Bullshit Guide To Linear Algebra, 2017

http://amzn.to/2k76D4C

Linear Algebra

19

Matrix Rank

The rank of a matrix is the estimate of the number of linearly

independent rows or columns in a matrix.

Linear Algebra - Matrix Arithmetic

20

Matrix Addition

Two matrices with the same dimensions can be added together to

create a new third matrix.

C = A + BC[0,0] = A[0,0] + B[0,0]

C[1,0] = A[1,0] + B[1,0]
C[2,0] = A[2,0] + B[2,0]
C[0,1] = A[0,1] + B[0,1]
C[1,1] = A[1,1] + B[1,1]
C[2,1] = A[2,1] + B[2,1]

Linear Algebra - Matrix Arithmetic

21

Matrix Subtraction

Similarly, one matrix can be subtracted from another matrix with the same

dimensions.

C = A - B

C[0,0] = A[0,0] - B[0,0]
C[1,0] = A[1,0] - B[1,0]
C[2,0] = A[2,0] - B[2,0]
C[0,1] = A[0,1] - B[0,1]
C[1,1] = A[1,1] - B[1,1]
C[2,1] = A[2,1] - B[2,1]

Linear Algebra - Matrix Arithmetic

22

Matrix Multiplication (Hadamard Product)

Two matrices with the same size can be multiplied together, and this is often called element -

wise matrix multiplication or the Hadamard product.

It is not the typical operation meant when referring to matrix multiplication, therefore a different

operator is often used, such as a circle “o”.

C = A o B
C[0,0] = A[0,0] * B[0,0]
C[1,0] = A[1,0] * B[1,0]
C[2,0] = A[2,0] * B[2,0]
C[0,1] = A[0,1] * B[0,1]
C[1,1] = A[1,1] * B[1,1]
C[2,1] = A[2,1] * B[2,1]

Linear Algebra - Matrix Arithmetic

23

Matrix Division

One matrix can be divided by another matrix with the same

dimensions.

C = A / B
C[0,0] = A[0,0] / B[0,0]
C[1,0] = A[1,0] / B[1,0]
C[2,0] = A[2,0] / B[2,0]
C[0,1] = A[0,1] / B[0,1]
C[1,1] = A[1,1] / B[1,1]
C[2,1] = A[2,1] / B[2,1]

Linear Algebra - Matrix Arithmetic

24

Matrix -Matrix Multiplication (Dot Product)

Matrix multiplication, also called the matrix dot product is more complicated than the previous

operations and involves a rule as not all matrices can be multiplied together.

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order for this
product to be defined, A must have the same number of columns as B has rows. If A is
of shape m × n and B is of shape n × p, then C is of shape m × p.

— Page 34, Deep Learning, 2016.

http://amzn.to/2B3MsuU

Linear Algebra - Matrix Arithmetic

25

Matrix -Matrix Multiplication (Dot Product)

a11, a12
A = a21, a22

a31, a32

b11, b12
B = b21, b22

a11 * b11 + a12 * b21, a11 * b12 + a12
* b22
C = a21 * b11 + a22 * b21, a21 * b12 + a22 * b22

a31 * b11 + a32 * b21, a31 * b12 + a32
* b22

Numerical Linear Algebra, Two Different
Approaches

• Solve Ax = b
• Direct methods:

– Deterministic
– Exact up to machine precision
– Expensive (in time and space)

• Iterative methods:
– Only approximate
– Cheaper in space and (possibly) time
– Convergence not guaranteed

Iterative Methods
Choose any x0 and repeat

until

or until

Presenter
Presentation Notes
Vector norm.

Example of Iterative Solution
Example system

with solution (2,1,1)
Suppose you know (physics) that solution components are roughly the same size, and
observe the dominant size of the diagonal, then

might be a good approximation: solution (2.1, 9/7, 8/6)

Iterative Example
Example system

with solution (2,1,1)
Also easy to solve:

with solution (2.1, 7.95/7, 5.9/6)

Iterative Example
• Instead of solving we solved

• Look for the missing part: , then

• Solve again and update

.

• Two decimals per iteration. This is not typical
Et t li O(3) t it ti O(2) it ti P t ti ll h

Abstract Presentation
• To solve Ax = b; too expensive; suppose K ≈ A and solving Kx = b is

possible

• Define Kx0 = b, then error correction x0 = x + e0, and A(x0 - e0) = b

• so Ae0 = Ax0 - b = r0; this is again unsolvable, so

• Kẽ0 and x1 = x0 - ẽ0

• Now iterate: e1 = x1 - x, Ae1 = Ax1 - b = r1 et cetera

Error Analysis
• One step

• Inductively:
• Geometric reduction (or amplification!)
• This is 'stationary iteration': every iteration step the same. Simple analysis, limited

applicability

Computationally
If A = K -N

then Ax = b ⟹ Kx = Nx + b ⟹ Kxi+1 = Nxi + b

(because Kx = Nx +b is a "fixed point" of an iteration)

Equivalent to the above, and you don't actually need to form the
residual

Choice of K
• The closer K is to A, the faster the convergence
• Diagonal and lower triangular choice mentioned above: let A = DA + LA + UA

be a splitting into diagonal, lower triangular, upper triangular part, then
• Jacobi method: K = DA (diagonal part),
• Gauss-Seidel method: K = DA + LA (lower triangle, including diagonal)
• SOR method:

Presenter
Presentation Notes
SOR: Successive Over Relaxation

Jacobi in Pictures

Jacobi Method
Given a square system of n linear equations :

where:

Jacobi Method
Then A can be decomposed into a diagonal component D, and the remainder R:

Jacobi Method
The solution is then obtained iteratively via

The computation of xi
(k+1) requires each element in x(k) except itself. Unlike

the Gauss–Seidel method, we can't overwrite xi
(k) with xi

(k+1), as that value will be
needed by the rest of the computation. The minimum amount of storage is two
vectors of size n.

Jacobi Method
Algorithm.

• Choose your initial guess, x[0]
• Start iterating, k=0

• While not converged do
• Start your i-loop (for i = 1 to n)

• sigma = 0
• Start your j-loop (for j = 1 to n)

• If j not equal to i
• sigma = sigma + a[i][j] * x[j]k

• End j-loop
• x[i]k = (b[i] – sigma)/a[i][i]

• End i-loop
• Check for convergence

• Iterate k, ie. k = k+1

What about the Lower and Upper
Triangles?

If we write D, L, and U for the diagonal, strict lower triangular and strict upper triangular and
parts of A, respectively,

then Jacobi’s Method can be written in matrix-vector notation as

so that

GS in Pictures

Gauss-Seidel
K = DA + LA

Algorithm:
for k = 1, ... until convergence, do:

for i = 1 ... n:

Implementation:
for k = 1, ... until convergence, do:

for i = 1 ... n:

Ax=b => (DA+LA+UA)x=b
(DA +LA)xk+1= -UAxk + b
{DA}ii=aii {UA or LA}ij=aij i≠j

Gauss-Seidel Method
Given a square system of n linear equations :

where:

Gauss-Seidel Method

The system of linear equations may be rewritten as:

Gauss-Seidel Method

Which gives us:

Gauss-Seidel Method
Algorithm:

• Choose your initial guess, theta[0]
• While not converged do:

• Start your i-loop (for i = 1 to n)
• sigma = 0
• Start your j-loop (for j = 1 to n)

• If j not equal to i
• sigma = sigma + a[i][j] * theta[j]

• End j-loop
• theta[i] = (b[i] – sigma)/a[i][i]

• End i-loop
• Check for convergence

• iterate

Stopping Tests
When to stop converging? Can size of the error be guaranteed?
• Direct tests on error en = x - xn impossible; two choices
• Relative change in the computed solution small:

• Residual small enough:

Without proof: both imply that the error is less than some other

Python - NumPy

48

"Numerical Python"
open source extension module for Python
provides fast precompiled functions for

mathematical and numerical routines
adds powerful data structures for efficient

computation of multi-dimensional arrays and
matrices.

NumPy, First Steps
Let build a simple list, turn it into a numpy array
and perform some simple math.

49

import numpy as np
cvalues = [25.3, 24.8, 26.9, 23.9]
C = np.array(cvalues)
print(C)

NumPy, First Steps
Let build a simple list, turn it into a numpy array
and perform some simple math.

vs.

50

print(C * 9 / 5 + 32)

fvalues = [x*9/5 + 32 for x in cvalues]
print(fvalues)

NumPy, Cooler things

51

import time
size_of_vec = 1000
def pure_python_version():

t1 = time.time()
X = range(size_of_vec)
Y = range(size_of_vec)
Z = []
for i in range(len(X)):

Z.append(X[i] + Y[i])
return time.time() - t1

def numpy_version():
t1 = time.time()
X = np.arange(size_of_vec)
Y = np.arange(size_of_vec)
Z = X + Y
return time.time() - t1

NumPy, Cooler things

52

t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)

Let's see which is faster.

NumPy, Multi-Dimension Arrays

53

A = np.array([[3.4, 8.7, 9.9],
[1.1, -7.8, -0.7],
[4.1, 12.3, 4.8]])

print(A)
print(A.ndim)

B = np.array([[[111, 112], [121, 122]],
[[211, 212], [221, 222]],
[[311, 312], [321, 322]]])

print(B)
print(B.ndim)

NumPy, Multi-Dimension Arrays

54

x = np.array([[67, 63, 87],
[77, 69, 59],
[85, 87, 99],
[79, 72, 71],
[63, 89, 93],
[68, 92, 78]])

print(np.shape(x))

The shape function:

NumPy, Multi-Dimension Arrays

55

x.shape = (3, 6)
print(x)

x.shape = (2, 9)
print(x)

The shape function can also *change* the shape:

NumPy, Multi-Dimension Arrays

56

x = np.array(42)
print(np.shape(x))

B = np.array([[[111, 112], [121, 122]],
[[211, 212], [221, 222]],
[[311, 312], [321, 322]]])

print(B.shape)

A couple more examples of shape:

NumPy, Multi-Dimension Arrays

57

F = np.array([1, 1, 2, 3, 5, 8, 13, 21])

print the first element of F, i.e. the element with the index 0

print(F[0])

print the last element of F

print(F[-1])

B = np.array([[[111, 112], [121, 122]],
[[211, 212], [221, 222]],
[[311, 312], [321, 322]]])

print(B[0][1][0])

indexing:

NumPy, Multi-Dimension Arrays

58

A = np.array([
[11,12,13,14,15],
[21,22,23,24,25],
[31,32,33,34,35],
[41,42,43,44,45],
[51,52,53,54,55]])

print(A[:3,2:])

print(A[3:,:])

slicing:

NumPy, Multi-Dimension Arrays

59

np.identity(4)

function to create an identity array

Presenter
Presentation Notes
The identity array is a square array with ones on the main diagonal.

NumPy, By Example

60

def TimeStep(self, dt=0.0):
"""Takes a time step using straight forward Python loops."""
g = self.grid
nx, ny = g.u.shape
dx2, dy2 = g.dx**2, g.dy**2
dnr_inv = 0.5/(dx2 + dy2)
u = g.u
err = 0.0
for i in range(1, nx-1):

for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +

(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
diff = u[i,j] - tmp
err += diff*diff

return numpy.sqrt(err)

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be a
rectangle and the boundary values at the sides of this rectangle are given.

NumPy, By Example

61

def numericTimeStep(self, dt=0.0):
"""Takes a time step using a NumPy expression."""
g = self.grid
dx2, dy2 = g.dx**2, g.dy**2
dnr_inv = 0.5/(dx2 + dy2)
u = g.u
g.old_u = u.copy() # needed to compute the error.

The actual iteration
u[1:-1, 1:-1] = ((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +

(u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

return g.computeError()

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be a
rectangle and the boundary values at the sides of this rectangle are given.

NumPy, Exercise

62

Algorithm.

* Find D, the Diagonal of of A : diag(A)

* Find R, the Remainder of A - D : A - diagflat(A)

* Choose your initial guess, x[0]
* Start iterating, k=0

* While not converged do
* Start your i-loop (for i = 1 to n)

* sigma = 0
* Start your j-loop (for j = 1 to n)

* If j not equal to i
* sigma = sigma + a[i][j] * x[j][k]

* End j-loop
* x[i]k = (b[i] – sigma)/a[i][i] : x = (b - dot(R,x)) / D

* End i-loop
* Check for convergence

* Iterate k, ie. k = k+1

Jacobi

Questions? Comments?

63

	Numpy
	Monte CarloPi
	Sequential Algorithm
	Sequential Algorithm
	Sequential Algorithm
	Algorithm
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra
	Linear Algebra - Matrix Arithmetic
	Linear Algebra - Matrix Arithmetic
	Linear Algebra - Matrix Arithmetic
	Linear Algebra - Matrix Arithmetic
	Linear Algebra - Matrix Arithmetic
	Linear Algebra - Matrix Arithmetic
	Numerical Linear Algebra, Two Different Approaches
	Iterative Methods
	Example of Iterative Solution
	Iterative Example
	Iterative Example
	Abstract Presentation
	Error Analysis
	Computationally
	Choice of K
	Jacobi in Pictures
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	GS in Pictures
	Gauss-Seidel
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Stopping Tests
	Python - NumPy
	NumPy, First Steps
	NumPy, First Steps
	NumPy, Cooler things
	NumPy, Cooler things
	NumPy, Multi-Dimension Arrays
	NumPy, Multi-Dimension Arrays
	NumPy, Multi-Dimension Arrays
	NumPy, Multi-Dimension Arrays
	NumPy, Multi-Dimension Arrays
	NumPy, Multi-Dimension Arrays
	NumPy, Multi-Dimension Arrays
	NumPy, By Example
	NumPy, By Example
	NumPy, Exercise
	Questions? Comments?

