
Python - Lists

A List is a kind of

Collection

-- A collection allows many values in a single “variable”

-- A collection is nice because many values can be carried around

in one convenient package

friends = ['Joseph', 'Glenn', 'Sally']

carryon = ['socks', 'shirt', 'perfume']

What is not a “Collection”

-- Most of the variables discussed have one value in them - when a

new value is assigned to a variable - the old value is over written

>>> x = 2

>>> x = 4

>>> print x

4

List Constants

-- List constants are surrounded

by square brakets and the

elements in the list are separated

by commas

-- A list element can be any

Python object - even another list

-- A list can be empty

>>> print [1, 24, 76]

[1, 24, 76]

>>> print ['red', 'yellow', 'blue']

['red', 'yellow', 'blue']

>>> print ['red', 24, 98.6]

['red', 24, 98.599999999999994]

>>> print [1, [5, 6], 7]

[1, [5, 6], 7]

>>> print []

[]

We already use lists!

for i in [5, 4, 3, 2, 1] :

print i

print 'Blastoff!'

5

4

3

2

1

Blastoff!

Lists and definite loops - best

pals

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends :

print ‘ Happy New Year:', friend

print 'Done!'

Happy New Year: Joseph Happy New Year: Glenn Happy New Year: Sally Done!

Looking Inside Lists

-- Just like strings, any single element in a list can be acquired

using an index specified in square brackets

0

Joseph

>>> friends = ['Joseph', 'Glenn', 'Sally']

>>> print friends[1]

Glenn
1

Glenn

2

Sally

Lists are

Mutable

-- Strings are "immutable" -

cannot change the contents of

a string - must make a new

string to make any change

-- Lists are "mutable" - we can

change an element of a list

using the index operator

>>> fruit = 'Banana’

>>> fruit[0] = 'b’

Traceback

TypeError: 'str' object does not

support item assignment

>>> x = fruit.lower()

>>> print x

banana

>>> lotto = [2, 14, 26, 41, 63]

>>> print lotto[2, 14, 26, 41, 63]

>>> lotto[2] = 28

>>> print lotto

[2, 14, 28, 41, 63]

How Long is a List?

--The len() function takes a list as

a parameter and returns the

number of elements in the list

-- Actually len() determines the

number of elements of any set or

sequence (i.e. such as a string...)

>>> greet = 'Hello Bob’

>>> print len(greet)

9

>>> x = [1, 2, 'joe', 99]

>>> print len(x)

4

>>>

Using the range function

-- The range function returns a

list of numbers, which range

from zero to one less than the

parameter

-- Construct an index loop using

for and an integer iterator

>>> print range(4)

[0, 1, 2, 3]

>>> friends = ['Joseph', 'Glenn', 'Sall

>>> print len(friends)

3

>>> print range(len(friends))

[0, 1, 2]

>>>

A tale of two loops...

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends :

print 'Happy New Year:', friend

for i in range(len(friends)) :

friend = friends[i]

print 'Happy New Year:', friend

>>> friends = ['Joseph', 'Glenn', 'Sally

>>> print len(friends)

3

>>> print range(len(friends))

[0, 1, 2]

>>>

Happy New Year: Joseph

Happy New Year: Glenn

Happy New Year: Sally

Concatenating lists using +

-- Create a new list by adding two

existing lists together

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print c

[1, 2, 3, 4, 5, 6]

>>> print a

[1, 2, 3]

Lists can be sliced using :

>>> t = [9, 41, 12, 3, 74, 15]

>>> t[1:3]

[41,12]

>>> t[:4]

[9, 41, 12, 3]

>>> t[3:]

[3, 74, 15]

>>> t[:]

[9, 41, 12, 3, 74, 15]

Remember: Just like in

strings, the second

number is "up to but not

including"

List Methods

>>> x = list()

>>> type(x)<type 'list'>

>>> dir(x)

['append', 'count', 'extend', 'index', 'insert', 'pop', 'remove',

'reverse', 'sort']

>>>

http://docs.python.org/tutorial/datastructures.html

http://docs.python.org/tutorial/datastructures.html

Building a list from scratch

-- Create an empty list and

add elements using the

append method

-- The list stays in order

and new elements are

added at the end of the list

>>> stuff = list()

>>> stuff.append('book')

>>> stuff.append(99)

>>> print stuff

['book', 99]

>>> stuff.append('cookie')

>>> print stuff

['book', 99, 'cookie']

Is Something in a List?

-- Python provides two

operators that let you

check if an item is in a list

-- These are logical

operators that return True

or False

--They do not modify the

list

>>> some = [1, 9, 21, 10, 16]

>>> 9 in some

True

>>> 15 in some

False

>>> 20 not in some

True

>>>

A List is an Ordered

Sequence
-- A list can hold many items

and keep those items in the

order until we do something to

change the order

-- A list can be sorted (i.e.

change its order)

-- The sort method (unlike in

strings) means "sort yourself"

>>> friends = ['Joseph', 'Glenn', 'Sall

>>> friends.sort()

>>> print friends

['Glenn', 'Joseph', 'Sally']

>>> print friends[1]

Joseph>>>

Built in Functions and Lists

>>> nums = [3, 41, 12, 9, 74, 15]

>>> print len(nums)

6

>>> print max(nums)

74

>>> print min(nums)

3

>>> print sum(nums)

154

>>> print sum(nums)/len(nums)

25

-- There are a number of

functions built into Python

that take lists as

parameters

-- Remember the loops we

built? These are much

simpler

http://docs.python.org/lib/built-in-funcs.html

http://docs.python.org/lib/built-in-funcs.html
http://docs.python.org/lib/built-in-funcs.html
http://docs.python.org/lib/built-in-funcs.html
http://docs.python.org/lib/built-in-funcs.html
http://docs.python.org/lib/built-in-funcs.html

numlist = list()

while True :

inp = raw_input('Enter a number: ')

 if inp == 'done' :

 break

value = float(inp)

numlist.append(value)

average = sum(numlist) / len(numlist)

print 'Average:', average

total = 0

count = 0

 while True :

inp = raw_input('Enter a number: ')

if inp == 'done' :

 break

value = float(inp) total = total + value

count = count + 1

average = total / count

print 'Average:', average

Enter a number: 3

Enter a number: 9

Enter a number: 5

Enter a number: done

Average: 5.66666666667

Best Friends: Strings and Lists

>>> abc = 'With three words’

>>> stuff = abc.split()

>>> print stuff

['With', 'three', 'words']

>>> print len(stuff)

3

>>> print stuff[0]

With

>>> print stuff

['With', 'three', 'words']

>>> for w in stuff :

print w ...

...

With

Three

Words

>>>

Split breaks a string into parts produces a list of strings. Access a

particular word or loop through all the words.

>>> line = 'A lot of spaces’

>>> etc = line.split()
>>> print etc

['A', 'lot',

'of',

'spaces']

>>>

>>> line = 'first;second;third’
>>> thing = line.split()

>>> print thing

['first;second;third']

>>> print len(thing)

1

>>> thing = line.split(';')

>>> print thing

['first', 'second', 'third']

>>> print len(thing) 3

>>>

When you do not specify a delimiter,

multiple spaces are treated like “one”
delimiter.

You can specify what delimiter character

to use in the splitting.

