
Python - Dictionaries

What is a Collection?

-- A collection is a great way to put more than one value in them

and carry them all around in one convenient package.

-- We have a bunch of values in a single “variable”

What is not a “Collection”

-- Most of our variables have one value in them - when we put a

new value in the variable - the old value is over written

$ python

>>> x = 2

>>> x = 4

>>> print x

4

A Story of Two Collections..

-- List

-- A linear collection of values that stay in order

-- Dictionary

-- A “bag” of values, each with its own label

Dictionaries

money

tissue
calculato

r

perfume

and c y

Dictionaries

-- Dictionaries are Python’s most powerful data collection

-- Dictionaries allow us to do fast database-like operations in

Python

Dictionaries

-- Lists index their entries

based on the position in the

list

-- Dictionaries are like bags

- no order

-- Index the things to put in

dictionary with a “lookup

tag”

>>> purse = dict()

>>> purse['money'] = 12

>>> purse['candy'] = 3

>>> purse['tissues'] = 75

>>> print purse

{'money': 12, 'tissues': 75, 'candy': 3}

>>> print purse['candy']

3

>>> purse['candy'] = purse['candy'] + 2’

>>> print purse

{'money': 12, 'tissues': 75, 'candy': 5}

Comparing Lists and

Dictionaries

>>> lst = list()

>>> lst.append(21)

>>> lst.append(183)

>>> print lst[21, 183]

>>> lst[0] = 23

>>> print lst[23, 183]

-- Dictionaries are like Lists except that they use keys instead of

numbers to look up values

>>> ddd = dict()

>>> ddd['age'] = 21

>>> ddd['course'] = 182

>>> print ddd

{'course': 182, 'age': 21}

>>> ddd['age'] = 23

>>> print ddd

{'course': 182, 'age': 23}

>>> lst = list()

>>> lst.append(21)

>>> lst.append(183)

>>> print lst

[21, 183]

>>> lst[0] = 23

>>> print lst

[23, 183]

>>> ddd = dict()

>>> ddd['age'] = 21

>>> ddd['course'] = 182

>>> print ddd

{'course': 182, 'age': 21}

>>> ddd['age'] = 23

>>> print ddd

{'course': 182, 'age': 23}

Key Value

[0] 21

[1] 183

List

Dictionary
Key Value

['course'] 183

['age'] 21

Dictionary Literals (Constants)

-- Dictionary literals use curly braces and have a list of key : value

pairs

-- An empty dictionary using empty curly braces

>>> jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}

>>> print jjj

{'jan': 100, 'chuck': 1, 'fred': 42}

>>> ooo = { }

>>> print ooo

{}

>>>

Many Counters with a

Dictionary
-- A common use of a dictionary is counting how often we

“see” something

>>> ccc = dict()

>>> ccc['csev'] = 1

>>> ccc['cwen'] = 1

>>> print ccc

{'csev': 1, 'cwen': 1}

>>> ccc['cwen'] = ccc['cwen'] + 1

>>> print ccc

{'csev': 1, 'cwen': 2}

Dictionary Tracebacks

-- An error will display to reference a key which is not in the

dictionary

-- Use the in operator to see if a key is in the dictionary

>>> ccc = dict()

>>> print ccc['csev']

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 'csev'

>>> print 'csev' in ccc

False

When we see a new name

-- A new name is added in the dictionary and if this the second or

later add one to the count in the dictionary under that name

counts = dict()

names = ['csev', 'cwen', 'csev', 'zqian', 'cwen']

for name in names :

if name not in counts:

counts[name] = 1

else :

counts[name] = counts[name] + 1 print

counts

{'csev': 2, 'zqian': 1, 'cwen': 2}

The get method for dictionaries

-- This pattern of checking to see if

a key is already in a dictionary and

assuming a default value if the key

is not there is so common, that

there is a method called get() that

does this for us

Default value if key does not

exist (and no Traceback).

if name in counts:

x = counts[name]

else :

x = 0

x = counts.get(name, 0)

{'csev': 2, 'zqian': 1, 'cwen': 2}

Simplified counting with get()

-- Use get() and provide a default value of zero when the key is not

yet in the dictionary - and then just add one

counts = dict()

names = ['csev', 'cwen', 'csev', 'zqian', 'cwen'] for name in names :

counts[name] = counts.get(name, 0) + 1

print counts

{'csev': 2, 'zqian': 1, 'cwen': 2}
Default

counts = dict()

names = ['csev', 'cwen', 'csev', 'zqian', 'cwen']

for name in names :

counts[name] = counts.get(name, 0) + 1 print

counts

Simplified counting with get()

the clown ran after the car and the car ran into the tent and

the tent fell down on the clown and the car

Counting Pattern

counts = dict()

print 'Enter a line of text: 'line =

raw_input('')

words = line.split()

print 'Words:', words

print 'Counting...’ for

word in words:

counts[word] = counts.get(word,0) + 1 print

'Counts', counts

The general pattern to count the words

in a line of text is to split the line into

words, then loop through the words

and use a dictionary to track the count

of each word independently.

Counting Words

Enter a line of text: the clown ran after the car and the

car ran into the tent and the tent fell down on the clown

and the car

Words: ['the', 'clown', 'ran', 'after', 'the', 'car', 'and', 'the',

'car', 'ran', 'into', 'the', 'tent', 'and', 'the', 'tent', 'fell',

'down', 'on', 'the', 'clown', 'and', 'the', 'car']

Counting...

Counts {'and': 3, 'on': 1, 'ran': 2, 'car': 3, 'into': 1, 'after':

1, 'clown': 2, 'down': 1, 'fell': 1, 'the': 7, 'tent': 2}

Definite Loops and Dictionaries

-- Even though dictionaries are not stored in order, we can write a

for loop that goes through all the entries in a dictionary - actually it

goes through all of the keys in the dictionary and looks up the

values

>>> counts = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}

>>> for key in counts:

... print key, counts[key]

...

jan 100 chuck 1 fred 42

>>>

Retrieving lists of Keys and

Values

-- You can get a list of

keys, values or items

>>> jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}

>>> print list(jjj)

['jan', 'chuck', 'fred']

>>> print jjj.keys()

(both) from a dictionary ['jan', 'chuck', 'fred']

>>> print jjj.values()

[100, 1, 42]

>>> print jjj.items()[('jan', 100), ('chuck', 1), ('fred', 42)]

>>>

What is a 'tuple'? - coming soon..

Bonus: Two Iteration Variables!

-- Loop through the key-

value pairs in a dictionary

using *two* iteration

variables

-- Each iteration, the first

variable is the key and the

the second variable is the

corresponding value for

the key

...

...

jan 100

chuck 1

fred 42

>>>
1

42

>>> jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}

>>> for aaa,bbb in jjj.items() :

print aaa, bbb

aaa bbb

[jan]

[chuck]

[fred]

100

