Python - Dictionaries

-- A collection Is a great way to put more than one value in them
and carry them all around in one convenient package.

-- We have a bunch of values in a single “variable”

What IS a "Collection”

-- Most of our variables have one value in them - when we put a
new value In the variable - the old value Is over written

$ python
>>> X =2
>>> X =4
>>> print x
4

A Story of Two Collections..

-- List

-- Allinear collection of values that stay in order

-- A "bag” of values, each with its own label

Dictionaries

perfue

cand

-- Dictionaries are Python’s most powerful data collection

-- Dictionaries allow us to do fast database-like operations in
Python

Dictionaries

>>> purse = dict()

-- Lists index their entries >>> purse['money’] = 12
based on the position in the >>> purse['candy'] = 3
list >>> pursel'tissues’]| = 75

>>> print purse

{'money". 12, 'tissues’. 75, 'candy". 3}
>>> print purse['candy’]

3

>>> purse['candy’] = purse['candy'] + 2’
>>> print purse

{'money'. 12, 'tissues'. 75, 'candy': 5}

-- Dictionaries are like bags
- no order

-- Index the things to put In
dictionary with a “lookup
tag”

Comparing Lists and
Dictionaries

-- Dictionaries are like Lists except that they use keys instead of
to look up values

>>> ddd =
>>> st = >>> ddd['age'] = 21
>>> |st.append(21) >>> ddd|'course’] = 182
>>> |st.append(183) >>> print ddd
>>> print Ist[21, 183] {'course: 182, 'age": 21}
>>> |st[0] = 23 >>> ddd['age'| = 23
>>> print Ist[23, 183] >>> print ddd

{'course’: 182, 'age’: 23}

>>> St = :

>>> [st.append(21) List

>>> |st.append(183) Key Value
>>> print [st

(21, 183] 0] 1

>>> [st[0] = 23 111183
>>> print Ist

(23, 183]

>>> ddd = . .

>>> ddd['age’] = 21 Dictionary
>>> ddd['course’] = 182 Key Value
>>> print ddd _
{'course': 182, ‘age': 21} ['course’| 183
>>> ddd['age’] = 23 hAa”

>>> print ddd [age’] 1

{'course'". 182, 'age". 23}

Dictionary Literals (Constants)

-- Dictionary literals use curly braces and have a list of key :
pairs

-- An empty dictionary using empty curly braces

>>> jjj={'chuck': 1, 'fred": 42, 'jan": 100}
>>> print jjj

{jan" , 'chuck’: 1, 'fred": 42}

>>> 000 =

>>> print 000

U

>2>2>

Many Counters with a
Dictionary

-- A common use of a dictionary Is counting how often we
“see” something

>>> ccc = dict()

>>> cccl'cseV'] =

>>> cccl'cwen'] =

>>> print ccc

{'csev': 1, 'cwen'". 1}

>>> cccl'cwen'] = cecl'cwen'] +
>>> print ccc

{'csev': 1, 'cwen'. 2}

Dictionary Tracebacks

-- An error will display to reference a key which is not in the
dictionary

-- Use the in operator to see if a key Is In the dictionary

>>> CCC =

>>> print ccc['cseV']

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: ‘csev’

>>> print 'csev' In ccc

False

When we see a new name

-- A new name Is added In the dictionary and if this the second or
later add one to the count in the dictionary under that name

counts = dict()
names = ['cseV', 'cwen', 'cseV', 'zgian', 'cwen']
for name In names :

If name not in counts:

counts[name] =1
else :
counts[name] = counts[name] + 1 print

counts

{'csev': 2, 'zgian' 1, 'cwen". 2}

The method for dictionaries

-- This pattern of checking to see if
a key iIs already in a dictionary and
assuming a default value If the key
IS not there Is so common, that
there is a called get() that
does this for us

Default value Iif key does not
exist (and no Traceback).

If name In counts:
X = counts[name]
else :
Xx=0

X = counts.get(name, 0)

'‘cseVv': 2, 'zgian': 1, 'cwen'’

Simplified counting with get()

-- Use get() and provide a default value of zero when the key Is not
yet In the dictionary - and then just add one

counts = dict()

names = ['cseV', 'cwen', 'cseV', 'zgian', 'cwen'] for name in names
counts[name] = counts.get(name, 0) + 1

print counts

Defal{ {'csev': 2, 'zgian' 1, 'cwen": 2}

Simplified counting with get()

counts = dict() .
names = ['cseV', 'cwen’, 'cseV', 'zgian', '‘cwen'] |
for name in names : ': e
counts[hame] = counts.get(name, 0) + 1 print _
counts k
- Y

the clown ran after the car and the car ran into the tent and
the tent fell down on the clown and the car

gﬂﬂ?fé:ter a(l)ine of text: line = The general pattern to count the words

® In a line of text Is to the line into

words, then loop through the words
and use a dictionary to track the count
orint "Words:", words of each word independently.

words = line. ()

print 'Counting...” for
word In words:

counts[word] = counts.get(word,0) + 1 print
'‘Counts’, counts

Enter a line of text: the clown ran after the car and the
car ran into the tent and the tent fell down on the clown

and the car

Words: ['the’, 'clown’, 'ran’, 'after’, 'the', 'car’, 'and’, 'the’,
'car’, 'ran’, 'Into', 'the’, 'tent', 'and’, 'the’, 'tent’, 'fell’
'‘down’, 'on’, 'the', ‘clown’, 'and’, 'the’, 'car’]

Counting...
Counts {'and": 3, 'on": 1, ran": 2, 'car". 3, 'Into’: 1, 'after"
1, 'clown": 2, 'down’: 1, 'fell': 1, 'the": 7, 'tent": 2}

Definite Loops and Dictionaries

-- Even though dictionaries are not stored in order, we can write a
for loop that goes through all the entries in a dictionary - actually it
goes through all of the keys in the dictionary and looks up the

values

>>> counts = { 'chuck': 1, 'fred": 42, 'jJan": 100}
>>> for key Iin counts:
print key, counts[key]

jJan 100 chuck 1 fred 42
>>>

Retrieving lists of Keys and
Values

>>> |)] ={'chuck': 1, 'fred"': 42, Jan": 100}
>>> print list(j))

- You can get a listof ~ [1an’, ‘chuck’, ‘fred]

keys, values oritems ~ >>> print Jjj.keys()

(both) from a dictionary l)an’, ‘chuck’, ‘fred’]
>>> print Jjj.values()

[100, 1, 42]
>>> print Jjj.items()[('jan’, 100), (‘chuck’, 1), (‘fred’, 42)]

>>> \

What Is a 'tuple'? - coming soon..

Bonus: Two lteration Variables!

-- Loop through the key-
value pairs in a dictionary
using *two* iteration

>>> ||| ={'chuck’': 1, 'fred': 42, Jan": 100}
>>> for aaa,bbb In |jj.items() :
print aaa, bbb

variables

-- Each iteration, the first jan 100 o bbE

variable is the key and the chuck 1 .

the second variable is the fred 42 Jan] 100

corresponding value for >>2 [chuck] [

the key .
[fred]ig2

