
 Whisler 1

A Graphical User Interface and Database Management System

for Documenting Glacial Landmarks

Whisler, Abbey, Paden, John,

CReSIS, University of Kansas

awhisler08@gmail.com

Abstract

 The Landmarks Tool is a new feature in the CReSIS Data Picking Graphical User

Interface that allows users to mark landmarks in the echogram window with a rectangle and save

the segment ID, GPS times, two way travel times, and description of each feature directly to the

CReSIS database. It also allows users to query landmarks from the database using geospatial

information. Before this tool was created, recording a landmark required the use of an external

piece of software, like a shared spreadsheet.

The first step in building this tool was to add new Django scripts to the CReSIS Open

Polar Server that can accept the landmark data and store it in a PostgreSQL table. The second

part of the project was to construct a graphical user interface in Matlab that can accept user input

and call the Django scripts [4].

Introduction

 The Data Picker is an important data processing tool that allows users to explore CReSIS’

echogram images in an image browser window and trace the ice surface and ice bottom on the

image. The surface and bottom information is added to the PostgreSQL database and becomes

accessible across the CReSIS network. The landmarks project enables users to mark glacial

features they find in the echogram in a similar fashion and save them to the database.

Open Polar Server, or OPS, is a spatial data infrastructure that allows users to interact

with the CReSIS database from custom Matlab data processing tools or the web. The OPS

system employs multiple coding languages to accept commands from a user, access and alter the

database, and return a result [3].

Python and Django

 Django is a Python library built to streamline web development and database

management in Python [5]. The first step in the process of building the landmark tool was to

create new Django tables to hold the landmarks and landmark classes and add new Django

functions to the OPS Django library that the Matlab tool will call to create, delete, and update the

landmarks and landmark classes. Django serves as the middleman between Matlab and the

PostgreSQL database [3].

I. Setting Up the Virtual Machine

mailto:awhisler08@gmail.com
mailto:awhisler08@gmail.com

 Whisler 2

 All of CReSIS’ Django code is developed and tested on an Oracle Virtual Machine build

with a Linux Red Hat 64 bit operating system. CReSIS has a preconfigured virtual machine

stored on the server named ops.build.2014.08.19, which comes with some software already

downloaded on it, including Django and Python. To access these software, developers start the

Python virtual environment from the Linux terminal using the command source

/usr/bin/venv/bin/activate [2].

 The next step is to download a copy of the CReSIS Django Project from the OPS

repository using the following commands in the Linux terminal:
 cd /vagrant

 git pull

 sh conf/tools/updateDjangoProject.sh

 This code adds the OPS Django scripts to the user’s personal virtual machine, and the

user can manipulate and add to the scripts in this environment without committing any changes

to CReSIS’ actual database.

 Once the Django code is added to the virtual machine, it can be edited directly from the

Linux terminal, or developers can use an integrated development software like Eclipse for

writing and debugging [3].

II. Editing URLs and Models

The files that were modified for the landmarks project are organized in the OPS Django

Project as shown below:

Urls.py defines a variable named urlpatterns, which contains the URLs for each view that

will be called by the web server [5]. The lines of code that define the new URLs all look

something like this one:
 url(r’^create/landmark$’,’ops.views.createLandmark’)

 Models.py defines the structure for each table in the PostgreSQL database [5]. In order to

add landmarks and landmark classes to the database, the models.py file for the RDS module

needed a new table for landmark classes and a new table for landmarks. The following was

added to the models file in the RDS module:

 Whisler 3
class landmarks(models.Model):

 segment = models.ForeignKey('segments')

 start_GPS_time =

models.DecimalField(max_digits=12,decimal_places=11,db_inde

x

=True)

 stop_GPS_time =

models.DecimalField(max_digits=12,decimal_places=11,db_inde

x

=True)

 start_twtt =

models.DecimalField(max_digits=12,decimal_places=11,db_inde

x

=True)

stop_twtt =

models.DecimalField(max_digits=12,decimal_places=11,db_inde

x

=True)

description =

models.CharField(max_length=200,blank=True,null=True)

class landmark_classes(models.Model):

 name = models.CharField(max_length = 32)

 description = models.CharField(max_length =

200,blank=True,null=True

 The syncdb command can be used in Python to save new tables to the database after

they have been added to models.py. To modify a table that already exists with Django 1.6.5 or

older, developers should use the PostgreSQL command DROP TABLE to remove the existing table

before using syncdb to create the new tables [2].

III. Creating New Views

 Views.py contains the Django functions that are used to access, modify, and return data

from the PostgreSQL database [5].

The createLandmark view accepts the segment ID, GPS times, two way travel times,

class, and description for a new landmark as input and stores that information in a temporary

CSV file. Then it creates a cursor to interact with the database and uses the cursor to execute a

line of SQL code to copy the landmarks from the temporary file to the database. If the function

was successful it will return a response back to Matlab with a message saying that the landmark

insertion was successful.

The deleteLandmark view accepts the landmark ID number as input and deletes that

landmark from the database. Just like in createLandmark, a cursor executes an SQL statement

telling PostgreSQL to delete all landmarks where the landmark_id variable is equal to the

landmark ID of the landmark that the user selected. Like createLandmark, it then returns a

response back to Matlab to indicate if the delete was successful.

 Whisler 4

The editLandmark view accepts a landmark ID number, GPS times, two way travel

times, class, and description, then changes the fields for the landmark with the given landmark

ID number using a cursor and an SQL statement.

The getLandmarks view accepts a segment ID number as input and uses an SQL search

for landmarks that fall within this segment in the database. If it finds any, it returns their segment

number, GPS times, two way travel times, and description as output and returns a statement back

to Matlab indicate the success or failure of the search.

The landmark classes table stores the name and description of each landmark type that

users can select when they create a new landmark. The landmark classes views are similar to the

landmarks views listed above except they use the fields landmark_class_id, name, and

description.

IV. Debugging Views

 Although the views are normally run from Matlab, the debugging process takes place in

Eclipse. There is a file within the OPS Django Project called debugView.py where developers

select the application name and set a JSON string [3]. The JSON string contains the data that

Matlab would normally pass into the Django function as param.properties if the function were

being run from Matlab.Then the variable viewName is set equal to the name of the view to be

tested and run debugView.py. This allows developers to run through the code line by line and set

breakpoints. Most of the code for the views is contained within try and except statements, so if

the program encounters an error it will return the error as the variable e.

Matlab Picking Tool Graphical User Interface

The next step in building the landmark tool was to create the graphical user interface that

will allow users to manipulate the landmarks and landmarks class data easily from the Data

Picker. The code for this portion of the project is split up into four different folders in the

CReSIS Toolbox.

I. OPS Functions

 The following landmark functions are contained in the OPS folder:
 opsCreateLandmark

 opsDeleteLandmark

 opsEditLandmark

 opsGetLandmarks

 opsCreateLandmarkClass

 opsDeleteLandmarkClass

 opsEditLandmarkClass

 opsGetLandmarkClasses

Each of these Matlab functions calls its respective landmarks or landmark classes Django

view. They all have the same basic layout. First they accept the system name and other

parameters as input, then they turn the parameters into a JSON string. This information is sent to

 Whisler 5

the appropriate Django view as a command, then Django accesses the database and returns the

response to Matlab, and finally the Matlab function returns this response as output. The OPS

functions are called by the echogram window, landmark pick tool, and landmark classes window.

II. Echogram Window

 The echowin class folder within the CReSIS Toolbox contains the scripts that run when

that window is loaded. One of these is a class definition file named echowin.m that defines the

properties, methods, and events used by echowin. The echowin file runs when the user presses

the load echogram button. When the echowin file runs it initializes the fields contained in the

echowin object, then it calls the echogram create_ui function.

 create_ui creates the echogram figure window and sets its properties, appearance,

callbacks, and listeners. This is where the developer designs the layout of the window, including

all of its text, buttons, and pulldown menus [1]. When it is called, the GUI window opens. In the

GUI, users can select (l)andmark from the pulldown menu or press the ‘l’ key on their keyboard.

If (l)andmark is selected, and the user clicks the Tool Params button, a window will appear with

the parameters for the Landmark Tool.

 Within the echogram create_ui function, instances of the picktool_landmark and

landmark_classes are created as well. While Matlab makes the echogram GUI it will also make

the landmarks GUI and the landmark classes GUI, but they are not visible until the user opens

them again by pressing the Tool Params button in the echogram window or the Create Class

button in the landmarks window respectively.

 Next, the draw function is called, and it calls the load functions, which load data to

display in the echogram window. load_landmarks uses opsGetLandmarks and

opsGetLandmarkClasses to load in the landmarks, then it calls set_landmarks from the

picktool_landmark folder, which passes in the landmarks in classes to the picktool_landmark

object and prints them in the landmarks window so that the user can select classes and

landmarks. Then load_landmarks calls plot_landmarks, which draws the landmarks from the

database on the echogram window as yellow rectangles. Finally, then echogram window will

finish loading and the user can draw new landmarks and modify the landmarks stored in the

database from the landmarks Tool Params window.

 Whisler 6

III. Landmark Pick Tool Window

 Like the echogram window, the landmark pick tool window folder contains a class

definition file, a create UI function, and a load function. It also contains a function called

left_click_and_drag that defines what will happen when the user presses the alt key and drags

the mouse.

 When echowin calls the picktool_landmark window, the class definition file initializes

the properties, events, and functions for the landmarks tool, and the create UI function for

picktool_landmark runs to create the new GUI. Inside the picktool_landmark class definition file

all of the functions to create, delete, update, sort, show, and hide landmarks are defined. These

functions are called when the user interacts with the corresponding GUI objects.

 left_click_and_drag tells the program to draw and store the coordinates of a new

landmark when a user uses alt-click and drag to draw a rectangle.

 Whisler 7

IV. Landmark Classes Window

 The landmark class window operates in very much the same way as the landmark pick

tool. It also contains a class definition file, a create UI function, and a load function.

 The echogram window calls the landmark_class window, then the landmark_class class

definition file initializes the properties, events, and functions for the create landmark class

window and calls the landmark_class’ create UI function to create its GUI. Inside this class

definition file, functions to create, delete, and update landmark classes are defined. If the user

tries to delete or modify a class that is already in use by existing landmarks in the database the

program will throw an error.

Results

There are some logical errors in the Landmarks Tool that have not yet been resolved, but

the tool is expected to be completed and committed to the CReSIS server sometime in August of

2015.

When the user loads the echogram window and presses the ‘l’ key or selects

‘(l)andmarks’ from the pulldown menu they can draw landmarks in the echogram window with a

yellow rectangle alt-click and drag. Then they can open the Tool Params window and the GPS

times and two way travel times for the new rectangle will be displayed in the window. Then, to

save the landmark to the database they must select a class from the pulldown menu and enter a

description in the description edit box. Once the class, description, GPS times and two way travel

times have been selected, they click the create button to add the new landmark to the database. If

they don’t enter a class and description, opsCreateLandmark will throw an error. To delete a

landmark, they click on a landmark in the list of landmarks in the Landmarks Tool Params

window and click the delete button. To edit the landmark, the user selects a landmark from the

list in the window and then selects whichever class they would like to change it to and types a

new description, then clicks ‘Update’. Like with ‘Create’, ‘Update’ will throw an error if there is

not a class and description. When the user runs create, delete, or update, the list of landmarks in

the window will refresh to show the landmarks that are currently in the database. When the user

presses the New Class button, the Create Classes window appears. In this window there are

editable fields for class name and class description. After the user has set a name and description

 Whisler 8

they can click the create button to add the class. To use the delete button they select a class from

the list of classes and click ‘Delete’, and to edit a class they select a class and fill the name and

description fields then click ‘Update’. Just like in the Pick Tool Landmark window, if the user

fails to fill the name or description field when they create or edit a class the program will throw

an error. After the user clicks ‘Create’, ‘Delete’, or ‘Update’, the list of landmark classes in the

Landmark Class window will be updated.

Conclusions and Future Applications

 The Landmark Tool is functional, but it will still need to go through additional revisions

before it is be ready for implementation in the OPS system.

 This project serves as a good example of how the OPS system as a whole works. Almost

forty different Matlab scripts were created or modified in the construction of the GUI, and eight

new views were added to the Django Project. The connection between user, user interface, and

database is complex. While this project only scratches the surface of that subject, the basic

methodology of this project is applicable to other CReSIS GUI projects. Django in particular is

difficult to conceptualize, so hopefully this project is useful to programmers working with

Django.

Acknowledgement

 Many thanks to the Center for the Remote Sensing of Ice Sheets for giving me the

opportunity to work in their Research Experience for Undergraduates program, where I had the

opportunity to work in the midst of prominent scientists from many different disciplines. Thanks

also to the National Science Foundation for providing the funding to support this summer

program.

 Much of my work was loosely modeled after similar code written by Weibo Liu, Trey

Stafford, and Kyle Purdon. Without their previous work and their mentorship, my work this

summer would have been infinitely more difficult.

 Particular thanks to John Paden, my mentor, for taking me on as his student research

assistant and challenging me to meet my full potential in academia. The opportunity he has

provided me here at CReSIS to improve my programming and problem solving skills will serve

me well in both my academic and professional life in the years to come.

References

[1] GUI Building. (n.d.). Retrieved July 20, 2015, from

http://www.mathworks.com/help/matlab/gui-development.html

[2] PostgreSQL Documentation. (n.d.). Retrieved July 22, 2015, from

http://www.postgresql.org/docs/

[3] Stafford, T. (n.d.). OPS. Retrieved July 20, 2015, from https://github.com/CReSIS/OPS

 Whisler 9

[4] Weibo Liu, Kyle Purdon, Trey Stafford and John Paden. (2015, April 21). Development of a

Web GIS Application for Cryosphere Community based on Open Source Software Tools. The

Association of American Geographers 111th Annual Meeting. Lecture conducted from Chicago,

Illinois.

[5] Writing Your First Django App, Part 1. (n.d.). Retrieved July 20, 2015, from

https://docs.djangoproject.com/en/1.8/intro/tutorial01/

