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Abstract 
Lidar measurements from the recent SAGE III Ozone Loss 
and Validation Experiment (SOLVE) have been used to 
identify the number of classes of Polar Stratospheric Clouds 
(PSCs) and their corresponding characteristics.  The 
backscatter lidar, flown aboard a DC8 aircraft, measures 
profiles of backscatter at 532 nm and 1064 nm, and 
depolarization at 532 nm.  These data along with the color 
ratio were used to categorize PSCs using a clustering 
algorithm. For each group or cluster, the central values or 
medoids describe the optical characteristics of the clouds.  
For this preliminary study, five such groups were determined 
with medoid scattering ratios of 1.13, 11.90, 47.68, 71.07, and, 
88.96 at 532 nm.  The mean quality index of 0.82 for the five 
groups shows that the clusters are sufficiently distinct from 
each other. 

 
I. INTRODUCTION 
The largest uncertainties in the most recent estimates of 

climate forcing are due to the forcing effects of aerosols 
and clouds.  There is a need to improve the 
characterization and classification of aerosols and clouds 
using their measured optical properties so that the 
uncertainties of their effects on radiation can be 
minimized.  Understanding these effects can lead to an 
improved ability to quantify such climate effects as global 
warming.  The physical properties of aerosols and clouds 
also have an effect on stratospheric chemistry.  In 
particular, chemical reactions that cause ozone depletion 
take place on the surfaces of clouds and aerosols.   

This study examines the properties of polar stratospheric 
clouds (PSCs).  PSCs occur in both polar regions 
whenever the ambient temperature falls below about 198 
K.  PSCs lead to increased ozone loss caused by the 
heterogeneous chemical reactions that occur on their 
surface [1].  Using a set of polar stratospheric data, this 
study identifies the number of PSC types and their 
corresponding characteristics.   

The data is from the lidar measurements of the recent 
SAGE III Ozone Loss and Validation Experiment 
(SOLVE).  SOLVE was a high latitude (Arctic) mission 
which was conducted over the course of the 1999-2000 
Northern hemisphere winter.  It was designed to examine 
the processes which control polar to mid-latitude 
stratospheric ozone levels and to acquire correlative 

measurements needed to validate the SAGE III satellite 
mission.   

An aerosol lidar aboard the DC8 aircraft measured 
profiles of aerosol and cloud backscatter at 532 nm and 
1064 nm and aerosol and cloud depolarization at 532 nm. 
From these measurements, the aerosol and cloud optical 
properties can be obtained.  For instance, information on 
the relative concentration and spatial distribution of 
aerosol and cloud particles can be obtained form the 
backscatter profiles at the two wavelengths.  The two 
wavelength measurements also provide information about 
particle size [2]. In addition, depolarization measurements 
from the particles can be used to infer particle shape and 
therefore phase [3].    

Fig. 1 is a SOLVE data plot of aerosol depolarization, 
color ratio, and backscatter coefficient.  

 
 

 

Fig. 1.  532 nm aerosol depolarization, color ratio 
(532/1064), and 1064 nm backscatter coefficient for the 
SOLVE measurements of Dec7, 1999. 

 
There has been a need to classify PSCs based on their 

optical properties and physical characteristics since they 
were first observed [4].  An analysis of lidar backscatter 



and depolarization ratios for PSCs revealed five different 
types [7].  Water ice PSCs were found to have relatively 
large backscattering and depolarization ratios.  A class of 
clouds that are not depolarizing at neither the visible or 
near infrared wavelength and with low total backscatter 
were also observed.  These are identified as Type 1b PSCs 
and are composed of ternary solutions of 
H2SO4/HNO3/H2O.  A third class of clouds that have high 
depolarization at both lidar wavelengths and relatively low 
backscattering ratios are named Type 1a PSCs. These 
clouds are composed of nitric acid tri- or dihydrate 
(commonly known as NAT).  The fourth class of PSCs is 
depolarizing at visible wavelengths but not near infrared 
wavelengths.  Termed Type 1c PSCs, these clouds are 
composed of small solid particles.  Lastly, clouds that have 
no depolarization at the lidar’s visible wavelength but 
significant depolarization at the infrared wavelength are 
likely to be mixtures of Type 1a and 1b PSCs. 

 
II.  EXPERIMENT 

To minimize the noise effects on the analysis, the 
SOLVE data was smoothed using a vertical averaging 
window of 150 m.  To ensure that the averaging did not 
substantially alter the data, percent residuals ( )(zR ) were 
calculated using 
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where N(z) is the original data point and N(z)  is the 
averaged data point.  The residuals are generally within the 
range of 10% of the measurements.  Fig. 2 and 3 show the 
averaged and raw data, and a profile of the residuals 
respectively. 

 

 
Fig. 2.   532 nm backscatter ratio.  Black line represents 

the raw data and the red line represents the data averaged 
150 m in altitude. 

 

 

Fig. 3.  Percent residuals after applying a vertical 
averaging window of 150 m. 

 
From the averaged data, the cloud containing 

measurements were identified for use in the categorization.  
The criterion used to identify the presence of clouds is a 
backscatter ratio at 532 nm greater than 1.1, as [5].   

The clustering algorithm was used to classify the clouds 
into mutually unknown groups based on combinations of 
their principal components.  Cluster analysis starts with a 
data matrix, where objects (measurements of clouds) are 
rows and observations (optical properties) are columns.  
Proximity matrices are then constructed where objects are 
both rows and columns and the numbers in the table are 
measures of similarity or differences between the 
observations.  This measure of similarity is chosen to be 
the squared Euclidean distance.  To prevent one measure 
from overwhelming the others, the measures can be 
transformed to standard scores. The proximity matrices 
resulting from the squared Euclidean distance that result 
are then summed to produce a combined distance matrix.  
Based on these distances, the measurements can be divided 
into groups.   

 In particular, a partitioning method has been chosen to 
perform the cluster analysis.  The technique is based on the 
search for representative objects among the many objects 
of the data set called medoids [6]. The medoids are 
calculated such that the total dissimilarity of all objects to 
their nearest medoid is minimal.  Each object of the data 
set then becomes a member of the cluster corresponding to 
the nearest medoid.   A range of values for the number of 
clusters (k) desired is required as input for the program.  
The natural number of clusters can be obtained from 
analysis of a quality index calculated for each cluster.  This 
index provides an indication of the relationship between 
the objects of a cluster.  A high index implies a well 
defined cluster while a low index implies a poorly defined 
cluster.  The quality indexes for all k clusters can then be 
averaged to yield a silhouette coefficient. Through 
experience an interpretation of this silhouette coefficient 
has been developed [6] shown in Table 1. 



Table 1.  Interpretation of the silhouette coefficients of 
the cluster analysis. 

Silhouette 
Coefficient 

Interpretation 

0.71-1.00   A strong structure has been found. 
0.51-0.71    A reasonable structure has been found. 
0.26-0.50   The structure is weak and could be 

artificial. 
≤ 0.25        No substantial structure has been found. 
 
The value of k that yields the highest silhouette 

coefficient can then be selected as the natural number of 
clusters for the data set.  The groups should be such that 
the degree of association is strong between members of the 
same cluster and weak between members of different 
clusters. Currently, the number of PSC classes are not well 
understood.  There have been reports of up to five distinct 
groups detected [7].  These studies may yield additional 
groups with relatively distinct optical and physical 
properties. 

 
III. RESULTS 

 Each object used in the clustering algorithm to 
classify the PSCs consists of backscatter ratio at 532 nm 
and the corresponding backscatter ratio at 1064 nm, 
depolarization at 532 nm, aerosol backscatter at 532 nm, 
aerosol backscatter at 1064 nm, and color ratio such that 
the backscatter ratio at 532 nm >1.1.  For these preliminary 
study, 1000 measurements of the SOLVE data was used. 
The number of clusters ranges from two to six and their 
corresponding silhouette coefficients are shown in Table 2. 

Table 2.  Silhouette coefficients for the natural number 
of clusters 

Number of 
Clusters 

Silhouette 
Coefficient 

2 0.70 
3 0.79 
4 0.81 
5 0.82 
6 0.76 

 
Partitioning the data into five clusters yields the highest 

silhouette coefficient, thus can be considered as the most 
natural number of clusters for the data set.   The medoids 
of the clusters provide an indication of the characteristics 
of the objects within that cluster.   Table 3 shows the 
number of objects in each cluster and the seven medoids of 
each cluster.  To illustrate the division of the clusters, we 
have plotted the 532 nm and 1064 nm backscatter 
coefficients in Fig. 5.  The plot shows that the five clusters 
are quite distinct from each other. 

Table 3.  Number of objects in each cluster and the 
medoids of each cluster 

Cluster No.of 
objects 

Rs 

(532 nm) 

Rs 

(1064 nm) 

δ 

1 722 1.13 2.58 0.041 

2 135 47.68 1.95 0.009 

3 47 88.96 17.55 0.160 

4 65 11.90 62.98 0.153 

5 31 71.07 143.25 0.227 

 

   

Fig. 5 The 532 nm backscatter ratio plotted against the 
1064 nm backscatter ratio for the five clusters: 
Red=Cluster1, black=Cluster2, yellow=Cluster3, 
aqua=Cluster4, blue=Cluster5 

 
IV.  CONCLUSION 

The clustering algorithm successfully classified the 
limited data set used for this study into five groups. The 
silhouette coefficient of 0.82 shows that these five groups 
are quite distinct from each other. This study shows that 
cluster analysis is an unbiased method that can be used to 
group PSCs.  There still remains significant steps to more 
accurately perform the analysis.  For instance, temperature 
will be included among the variables. Following the 
success of this preliminary study, the whole SOLVE data 
set along with ambient temperature will be used to obtain a 
more definitive classification. 
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